
ECEN 4213 Computer Based System Design

PBASIC Language Basics October 14, 2002 1

PBASIC Language Basics

Dhinesh Sasidaran

PBASIC INTRODUCTION

PBASIC stands for Parallax BASIC which is a variant of BASIC. This special language
has familiar BASIC instructions such as FOR..NEXT, IF..THEN and GOTO along with
some useful extra instructions that are specially for input and output (I/O). Programs can
be written using the STAMP programming software and downloaded on a serial port to
the BASIC Stamp.

YOUR FIRST STAMP PROGRAM

You can use the DEBUG command to print values to the debugging terminal managed by
the STAMP programming software. The command allows you to view variables or track
the flow of execution through your program. Run the parallax software and write the fol-
lowing program in the STAMP editor window:

‘{$STAMP BS2}
DEBUG “My first STAMP Program!”
END

Run your program. A window should pop up and you should see the debugging message
on the screen.

What appears is what was sent from the BASIC Stamp, through the programming cable
to the PC. The first line of the program is a special comment (or directive) which indicates
which version of the Stamp is in use.

ECEN 4213 Computer Based System Design

PBASIC Language Basics October 14, 2002 2

Writing your program

Write your program using the BASIC Stamp Windows Editor as shown in Figure 1.

FIGURE 1. BASIC Stamp Windows Editor

After entering your program using the Stamp editor, select Run --> Run (or by pressing
Ctrl-R). This tokenizes your code and downloads it into the Stamp.

MEMORY MAP AND I/O

The BASIC Stamp has 32 bytes of variable RAM space arranged as shown in Figure 2.

FIGURE 2. Stamp memory map

DIRS

 W0

 W1

 W2

 W3

 W4

 W5

W6

W7

W8

W9

W10

W11

W12

DIRH DIRL

B1 B0

B3 B2

B5 B4

B7 B6

B9 B8

B11 B10

B13 B12

B15 B14

B17 B16

B19 B18

B21 B20

B23 B22

B25 B24

INS/OUTS
INH/OUTH INL/OUTL

ECEN 4213 Computer Based System Design

PBASIC Language Basics October 14, 2002 3

IDENTIFIERS

Identifiers are names that a programmer makes up when writing a program. In PBASIC,
an identifier must begin with a letter and can be composed of a combination of letters,
digits and the underscore character (_) but cannot be the same as PBASIC keywords
(reserved words) or labels. PBASIC is not case sensitive and therefore both upper case
and lower case letters can be used in an identifier.

KEYWORDS (Reserved Words)

Appendix B of the STAMP manual provides a list of PBASIC keywords. You can down-
load the manual from :

(www.parallaxinc.com/downloads/download_documentation.htm)

GENERAL PROGRAM FORMAT

1. Labels

You can place labels in your program to identify a particular spot that your program has
to jump to. Labels are identified by colons (:) proceeding the label name.

2. Variables

The VAR keyword is used to specify a variable along with the size of the variable. The
VAR keyword causes the Stamp II programming software to reserve a register based
on the size specified. Before you use a variable in your program, you will need to
declare it. PBASIC however does have predefined variables that you can use without
first declaring them in your program. These are general-purpose variables with defined
names.

W0 through W12

B0 through B25 (where B0 is the lower byte of W0 and B1 is the high byte of W0)

However, it is recommended that you avoid using fixed variables in most situations and
let the PBASIC arrange the variables into the registers as it sees fit to make optimal
use of memory.

For example:

counter VAR byte

This command selects one of the byte-sized registers to be assigned to the variable
named counter. The sizes of the variable can vary from WORD, BYTE, NIB (nibble) or
BIT.

Dog VAR BIT ‘Value can be 0 or 1
Cat VAR NIB ‘Value can be 0 to 15
Dolphin VAR BYTE ‘Value can be 0 to 255
Whale VAR WORD ‘Value can be 0 to 65535

ECEN 4213 Computer Based System Design

PBASIC Language Basics October 14, 2002 4

Variables should be assigned by determining the largest value that will ever be stored
in it. The smallest size with respect to that should be chosen for the variable.

Aliases for variables can also be created using the VAR command. For example:

counter VAR BYTE
countodd VAR counter

In the lines above, countodd is an alias to the variable counter. Anything stored in
counter shows up in countodd and vice versa. Both names will refer to the same phys-
ical address.
You can also use the alias as a window into a portion of another variable. This is done
using “modifiers”. For example:

Whale VAR WORD ‘A 16-bit variable
Dolphin VAR Whale.HIGHBYTE ‘Highest 8 bits of Whale
Shark VAR Whale.LOWBYTE ‘Lowest 8 bits of Whale

The following table lists the modifiers and the definition of their use with variables.

3. Array variables

You can also declare arrays using the VAR command. An array has multiple items of
the same type. The following command is used to declare an array with a list of 3
bytes.

Modifiers Definition

LOWBYTE Low byte of a word

HIGHBYTE high byte of a word

BYTE0 byte 0 (low byte) of a word

LOWNIB low nibble of word or byte

HIGHNIB high nibble of word or byte

NIB0 nib 0 of a word or byte

NIB1 nib 1 of a word or byte

NIB2 nib 2 of a word

NIB3 nib 3 of a word

LOWBIT low bit of a word, byte, or nibble

HIGHBIT high bit of a word, byte, or nibble

BIT0 bit 0 of a word, byte, or nibble

BIT1 bit 1 of a word, byte, or nibble

BIT2 bit 2 of a word, byte, or nibble

BIT3 bit 3 of a word, byte, or nibble

BIT4 ... BIT7 bits 4 through 7 of a word or byte

BIT8 ... BIT15 bits 8 through 15 of a word

ECEN 4213 Computer Based System Design

PBASIC Language Basics October 14, 2002 5

myarray VAR byte(3)

This command creates a 3 byte-sized element array. With the abovementioned decla-
ration, the following assignments could be made:

myarray(0) = 1

myarray(1) = 10

myarray(2) = 100

Using an array without the specified index will cause the software to respond with/to
the 1st element in the array.

4. Input/Output direction

The direction of input and output pins on the Stamp can be controlled by setting the
appropriate bits in the DIRS register: a ‘1’ indicates an output pin and a ‘0’ indicates an
input pin. For example:

dirs = $F000

this is equivalent to setting I/O pins 15:12 as output pins while pins 11:0 are designated
as input pins.

Separate registers are provided for input (INS) and output (OUTS) and can be
assigned separately (IN0 or OUT1).

The OUTS register remembers what is written into it even if some of the bits are not
outputs to begin with at that time. When the DIRS register changes the directions of
those bits to outputs, the output pin will use the value that exists in the OUTS register.

5. Math expressions

Math operations are performed from left to right. There are no operator precedence
rules except when it comes to UNARY and BINARY operators. Unary operators are
given precedence in math calculations. For example:

10 - SQR 16

The BASIC Stamp first takes the square root of 16 and then subtracts it from 10.

In the case of binary operators, the expression:

5 + 3 * 2

will yeild the result 16 and not 11. Therefore, for proper calculation, the parentheses
character can be placed in the expression.

5 + (3 * 2) = 11

Note: Only 8 levels of parentheses are allowed in your math expressions.

Math expressions can also be used when dealing with input and output pins. For
example:

B1 = 10
INPUT B1+1 ‘Make pin 11 an input pin

6. Constants

Constants can be specified using the CON keyword. For example:

delay CON 1000

Constants can also be defined in terms of another constant but must be kept fairly sim-
ple. For example

ECEN 4213 Computer Based System Design

PBASIC Language Basics October 14, 2002 6

Whale CON 20

Dolphin CON Whale*2-1

NUMBERS

PBASIC allows you to use several numbering systems. By default, it assumes that num-
bers are in decimal, but you can identify binary and hexadecimal numbers with a prefix.

99 decimal
%1010 binary
$FE hex

BASIC Stamp performs integer match (whole numbers only) and drops any fractional por-
tion from the results of the computation. The size of the variables can be a bit (0-1), nibble
(0-15), byte (0-255) or word (0-65535) respectively.

For negative numbers, two’s complement math can be used for representation.

Negative Numbers

When the Stamp performs calculations, if the value is greater than the size of the variable,
then it just chops off the extra bits from left to right to form the appropriate size. For exam-
ple:

When adding $64 to $FFDF (DEC 100 and -33), the result would be $10043 but the
Stamp chops the extra bit(s) off, leaving the result to be $0043 = 67.

Adding 2 large numbers

Sometimes there may be a need to add or subtract large numbers depending on the
application. In order to do this, we can concatenate (not physically) several registers
together. For example, suppose we wish to add 2, 32 bit numbers together:

Add: W1:W2 + W3:W4

W1 = $2
W2 = $FFFF
W3 = 0
W4 = 1

W1:W2 0002 FFFF

W3:W4 0000 0001

W1:W2 0003 0000

overflow results in this word (W2) being
less than the original W2

Add 1 to W1 (or W3) before adding words
W1 and W3 together.

ECEN 4213 Computer Based System Design

PBASIC Language Basics October 14, 2002 7

Program Example 1:

W1 = $2
W2 = $FFFF
W3 = 0
W4 = 1

W5 = W2 ‘temporary storage for W2
W2 = W2 + W4
IF W2 >= W5 then nocy ‘if W2 < (old) W2
W1 = W1 + 1

nocy:
W1 = W1 + W3

Subtracting 2 large numbers

Subtract: W1:W2 - W3:W4

W1 = 0
W2 = 1
W3 = $2
W4 = $FFFF

W1:W2 0000 0001

W3:W4 0002 FFFF

W1:W2 FFFD 0002

Program Example 2:

W1 = 0
W2 = 1
W3 = $2
W4 = $FFFF

W5 = W2 ‘temporary storage for W2
W2 = W2 - W4
IF W2 <= W5 then nobor ‘if W2 > (old) W2

Subtract 1 from W1 (or W3) before subtracting
W3 from W1.word

underflow results in this word (W2) being
more than the original W2

ECEN 4213 Computer Based System Design

PBASIC Language Basics October 14, 2002 8

W1 = W1 - 1

nobor:
W1 = W1 - W3

Multiplying 2 large numbers

Multiplying 2 16 bit numbers requires a 32 bit result. The ‘*’ and ‘**’ operators can be used
for this purpose.

* --> returns value of bottom 16 bits

** --> returns value of top 16 bits

For example:

Multiplication of $FFFF and $FFFF produces the result $FFFE0001

W1 = $FFFF

W2 = $FFFF

W3 = W1 * W2

W4 = W1 ** W2

Non-integer numbers

The BASIC Stamp can only handle whole integer numbers. Therefore, methods of con-
version to integer numbers is necessary depending on your exact needs. For the expres-
sion:

F = 1.8 * C + 32

can be re-written as

F = 18 * C + 320

This conversion however means that the actual result 1/10th of the result obtained from
the calculation.

One way to deal with fractional numbers is to use the ‘ */ ’ operator. It has the effect of
multiplying a value by a whole number and a fraction. This operator places the whole
number portion in the upper byte, multiplies the fractional part by 256 and places the
result in the lower byte.

For example, if multiplying value with 1.8, using the ‘ */ ’ would mean 0.8 * 256 = 204.8 =
205 and therefore:

Upper byte : 01

Lower byte : CD

so 1.8 can be represented as $01CD. Therefore, some care will need to be taken when
dealing with non-integer numbers.

Now, F = 1.8 * C + 32 can be re-written as F = C */ $01CD + 32

