

Warranty

Parallax warrants its products against defects in materials and workmanship for a period of 90 days. If you discover a defect, Parallax will, at its
option, repair, replace, or refund the purchase price. Simply call for a Return Merchandise Authorization (RMA) number, write the number on the
outside of the box and send it back to Parallax. Please include your name, telephone number, shipping address, and a description of the
problem. We will return your product, or its replacement, using the same shipping method used to ship the product to Parallax.

14-Day Money Back Guarantee

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full refund. Parallax will
refund the purchase price of the product, excluding shipping / handling costs. This does not apply if the product has been altered or damaged.

Copyrights and Trademarks

This documentation is copyright 2000-2001 by Parallax, Inc. BASIC Stamp is a registered trademark of Parallax, Inc. If you decided to use the
name BASIC Stamp on your web page or in printed material, you must state that "BASIC Stamp is a registered trademark of Parallax, Inc." Other
brand and product names are trademarks or registered trademarks of their respective holders.

Disclaimer of Liability

Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under any legal
theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, and any costs or recovering,
reprogramming, or reproducing any data stored in or used with Parallax products. Parallax is also not responsible for any personal damage,
including that to life and health, resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no
matter how life-threatening it may be.

Internet Access

We maintain internet systems for your use. These may be used to obtain software, communicate with members of Parallax, and communicate
with other customers. Access information is shown below:

 E-mail: info@parallaxinc.com
 Web: www.parallaxinc.com and www.stampsinclass.com

Internet BASIC Stamp Discussion List

We maintain two e-mail discussion lists for people interested in BASIC Stamps (subscribe at www.parallaxinc.com under the technical support
button). The BASIC Stamp list server includes engineers, hobbyists, and enthusiasts. The list works like this: lots of people subscribe to the list,
and then all questions and answers to the list are distributed to all subscribers. It’s a fun, fast, and free way to discuss BASIC Stamp issues and
get answers to technical questions. This list generates about 40 messages per day.

The Stamps in Class list is for students and educators who wish to share educational ideas. To subscribe to this list go to
www.stampsinclass.com and look for the E-groups list. This list generates about 5 messages per day.

Table of Contents

StampWorks Manual Version 1.2 • Page 1

Table of Contents

Preface.. 3
 Introduction .. 5
 Getting the Most from your StampWorks Lab.. 5
 Three Steps to Success with StampWorks .. 5

Preparing your StampWorks Lab ... 7
 Contents of this Kit... 7
 Preparing the Breadboard ... 8

Programming Essentials .. 13
 Contents of a Working Program... 13
 Branching – Redirecting the Flow of a Program... 14
 Looping – Running Code Again and Again .. 15
 Subroutines – Reusable Code that Saves Program Space ... 17
 The Elements of PBASIC Style... 18

Time to Experiment .. 23
 Learn the Programming Concepts.. 23
 Building the Projects... 23
 What to do Between Projects .. 23
 Experiment #1: Flash an LED!... 25
 Experiment #2: Flash an LED (Version 2)... 29
 Experiment #3: Display a Counter with LEDs.. 31
 Experiment #4: Science Fiction LED Display ... 35
 Experiment #5: LED Graph (Dot or Bar)... 37
 Experiment #6: A Simple Game .. 43
 Experiment #7: A Lighting Controller ... 49

Building Circuits On Your Own... 55

Using 7-Segment Displays ... 57
 Experiment #8: A Single-Digit Counter... 59
 Experiment #9: A Digital Die... 63
 Experiment #10: LED Clock Display ... 67
Using Character LCDs... 73

Table of Contents

Page 2 • StampWorks Manual Version 1.2

 Experiment #11: A Basic LCD Demonstration ... 75
 Experiment #12: Creating Custom LCD Characters ... 81
 Experiment #13: Reading the LCD RAM... 87
 Experiment #14: Magic 8-Ball Game.. 93

Moving Forward ... 99
 Experiment #15: Debouncing Multiple Inputs ..101
 Experiment #16: Counting Events ..105
 Experiment #17: Frequency Measurement ..109
 Experiment #18: Advanced Frequency Measurements..113
 Experiment #19: A Light-Controlled Theremin ...117
 Experiment #20: Sound Effects..121
 Experiment #21: Analog Input with PULSIN ..129
 Experiment #22: Analog Output with PWM ...133
 Experiment #23: Expanding Outputs ..137
 Experiment #23: Expanding Outputs ..141
 Experiment #24: Expanding Inputs ..145
 Experiment #24: Expanding Inputs ..149
 Experiment #25: Hobby Servo Control..153
 Experiment #26: Stepper Motor Control..157
 Experiment #27: Voltage Measurements...163
 Experiment #28: Temperature Measurement ..167
 Experiment #29: Advanced Seven-Segment Multiplexing..171
 Experiment #30: Using a Real-Time Clock...179
 Experiment #31: Serial Communications...187
 Experiment #32: I2C Communications ..197

Striking Out on Your Own ...205

Appendix A: BASIC Stamp II Manual Version 2.0c ..207

Preface

StampWorks Manual Version 1.2 • Page 3

Preface

Dear Friends:

There are probably as many ways to learn a new subject or skill as there are students and yet, most
will agree that learning by doing produces the longest lasting results. And, quite frankly, learning by
doing is almost always the most satisfying way to learn; it involves more of the senses. That’s what
this text and the StampWorks kit is all about: learning to program the BASIC Stamp by actually
writing programs for it. The theory sections are short and concise. You’ll learn programming theory
by putting it into practice. There’s not a lot of hand holding here; there’s work – fun work that will
teach you about microcontroller programming with the Parallax BASIC Stamp.

Why take up the challenge? Why learn to write programs for the BASIC Stamp microcontroller? The
answer is simple, if not obvious: microcontrollers are everywhere. They’re in our television sets, our
microwave ovens and our sprinkler controllers – even our cars. The fact is that most new cars today
have ten or more microcontrollers managing everything from the engine, the interior climate, wheel
spin (traction control), the braking system (anti-lock braking) and many other functions. In short,
today’s cars are safer and more comfortable due, in large part, to the use of microcontrollers.

With microcontrollers we can build “smart” circuits and devices. In the past, we would have to
change wiring or components in a circuit to modify or create a new behavior. The advantage of using
a microcontroller over other approaches is that changing its program can modify the behavior of our
circuit or device. The advantage of using the BASIC Stamp is that writing and modifying a program is
very easy and the StampWorks kit will show you just how easy it can be.

Have fun with these projects and think about how you could apply the concepts while building each
one. I appreciate your feedback anytime by e-mail to jwilliams@parallaxinc.com.

Introduction

StampWorks Manual Version 1.2 • Page 5

Introduction

Getting the Most from Your StampWorks Lab

This book is divided into two major sections: the StampWorks experiments and the BASIC Stamp II
manual. Throughout the use of this course, you will be moving between the two sections frequently
as you work with the experiments. Additional reference materials are available from download on the
StampWorks page at www.parallaxinc.com, including datasheets, updates and technical details
released after this publication.

Three Steps to Success with StampWorks:

1. Read Section 1 of the BASIC Stamp II manual. This section will introduce you to the BASIC
Stamp II and guide you through the installation of the programming software. Another
helpful resource is Robotics chapter 1 from www.stampsinclass.com.

2. Read “Prepare your StampWorks Lab for Experiments,” the next section of this manual. This

section walks you through the simple steps of preparing the experiment board for the
projects that follow.

3. Work your way through the experiments, referring to the BASIC Stamp Manual syntax guide

as needed. This is the fun part – working with the Stamp by building simple circuits and
writing code.

By the time you’ve worked your way through all the experiments you’ll be ready to develop your own
Stamp projects, from the very simple to the moderately complex. The key here is to make sure you
understand everything about a particular experiment before moving on to the next.

One last reminder: Have fun!

Preparing your StampWorks Lab

StampWorks Manual Version 1.2 • Page 7

Preparing Your StampWorks Lab

Before moving into the experiments, you need to take inventory of your kit and prepare your
StampWorks lab. Once this is done, you’ll be able to build a wide variety of Stamp-controlled circuits
with it.

The StampWorks kit includes the following items from Parallax:

Stock Code# Description Quantity
28135 NX-1000 board and 2x16 LCD 1
750-00007 12V 1A wall pack power supply 1
BS2-IC BASIC Stamp II module 1
800-00003 Serial programming cable 1
27220 StampWorks Manual 1
27000 Parallax CD-ROM 1
150-01020 1K ohm resistor, ¼ watt, 5% 4
150-01030 10K ohm resistor, ¼ watt, 5% 8
150-02210 220 ohm resistor, ¼ watt, 5% 3
150-04720 470 ohm resistor, ¼ watt, 5% 1
150-04720 4.7 k resistor, ¼ watt, 5% 2
200-01040 0.1 uF capacitor 4
201-01061 10 uF capacitor 1
201-03080 3300 uF capacitor 1
251-03230 32.768 kHz crystal 1
350-00009 Photoresistor 2
602-00009 74HC595 2
602-00010 74HC165 2
602-00015 LM358 dual op-amp 1
603-00001 MAX2719 LED display driver 1
604-00002 DS1620 digital thermometer 1
604-00005 DS1302 timekeeping chip 1
604-00009 555 timer 1
604-00020 24LC32 4K EEPROM 1
ADC0831 ADC0831 8-bit A/D converter 1
900-00001 Piezo Speaker 1
900-00005 Parallax standard servo 1
27964 12 VDC / 75 ohm stepper motor 1
451-00301 3-pin single row header 1
700-00050 22 gauge wire roll – red 1
700-00051 22 gauge wire roll – white 1
700-00052 22 gauge wire roll – black 1
28162 Digital multimeter 1
700-00065 6-piece tool set 1
700-00066 Wire cutter/stripper 1

Preparing your StampWorks Lab

Page 8 • StampWorks Manual Version 1.2

To setup the StampWorks for experiments that follow, you’ll need these items:

• BASIC Stamp II module
• StampWorks (INEX-1000) lab board
• 12-volt wall transformer
• Programming cable
• Red and black hookup wire
• Wire cutter/strippers

Start by removing the BASIC Stamp II module from its protective foam and carefully inserting it into
the StampWorks socket. You’ll notice that the BASIC Stamp II module and the StampWorks lab board
socket are marked with semi-circle alignment guides. The BASIC Stamp II module should be inserted
into the socket so that the alignment guides match.

Use the programming cable to connect the StampWorks lab board to your PC. It is best to select a
serial (com) port that is not already in use. If, however, you’re forced to unplug another device, for
example, a PDA or electronic organizer from your computer, make sure that you also disable its
communication software before attempting to program your BASIC Stamp. If you haven’t installed
the Stamp programming software, refer to Section 1 of the Stamp II programming manual for
instructions.

Ensure that the StampWorks lab board power switch is set to OFF. Connect the 2.1 mm power plug
to the DC INPUT jack. Plug the 12-volt wall transformer into a suitable (120 VAC) outlet.

On the center portion of the breadboard is a solderless breadboard where you will build circuits that
are not integral to the StampWorks lab board itself (a variety of parts are included in the
StampWorks kit). It’s important to understand how this breadboard works. With a little bit of
preparation, it will be even easier to use with the experiments that follow.

Preparing your StampWorks Lab

StampWorks Manual Version 1.2 • Page 9

The innermost portion of the breadboard is where we will connect our components. This section of
the breadboard consists of several columns of sockets (there are numbers printed along the top for
reference). For each column there are two sets of rows. The rows are labeled A through E and F
through J, respectively. For any column, sockets A through E are electrically connected. The same
holds true for rows F through J.

Above and below the main section of breadboard are two horizontal rows of sockets, each divided in
the middle. These horizontal rows (often called “rails” or “buses”) will be used to carry +5 volts
(Vdd) and Ground (Vss). Our preparation of the breadboard involves connecting the rails so that
they run from end-to-end, connecting the top and bottom rails together and, finally, connecting the
rails to Vdd and Vss. Here’s what the breadboard looks like on the outside:

If we X-Rayed the breadboard, we would see the internal connections and the breaks in the Vdd and
Vss rails that need to be connected. Here’s a view of the breadboard’s internal connections:

Preparing your StampWorks Lab

Page 10 • StampWorks Manual Version 1.2

Start by setting your wire stripper for 22 (0.34 mm2) gauge. Take the spool of black wire and strip a
¼-inch (6 mm) length of insulation from the end of the wire. With your needle-nose pliers, carefully
bend the bare wire 90 degrees so that it looks like this:

Now push the bare wire into the topmost (ground) rail, into the socket that is just above breadboard
column 29 (this socket is just left of the middle of the breadboard, near the top). Hold the wire so
that it extends to the right. Mark the insulation by lightly pinching it with the diagonal cutters at the
socket above column 32. Be careful not to cut the wire.

Remove the wire from the breadboard and cut it about ¼-inch (6 mm) beyond the mark you just
made. With your wire strippers, remove the insulation at the mark. Now bend the second bare end
90 degrees so that the wire forms a squared “U” shape with the insulation in the middle.

If you’ve measured and cut carefully, this “U” shaped wire will plug comfortably into the ground rail
at sockets 29 and 32. This will create a single ground rail. Repeat this process with black wire for
the bottom-most rail. Then, connect the two rails together using the same process at column 60
(right-most sockets on each rail).

With the red wire, connect the top and bottom inside rail halves together. These rails will carry +5
volts, or Vdd. Connect the Vdd rails together at column 59.

Now take a 1½-inch (4 cm) section of black wire and a 1½-inch (4 cm) section of red wire and strip
¼-inch (6 mm) insulation from the ends of both. Bend each wire into a rounded “U” shape. These
wires are not designed to lie flat like the other connections, making them easy to remove from the
StampWorks lab board if necessary.

Preparing your StampWorks Lab

StampWorks Manual Version 1.2 • Page 11

Carefully plug one end of the red wire into any of the terminals sockets of the +5V block (near the
RESET switch) and the other end into the Vdd (+5) rail at column 1. Then, plug one end of the black
wire into any of the sockets of the GND block and other end into the ground rail at column 19. BE
VERY CAREFUL with these last two connections. If the Vdd and Vss rails get connected together,
damage will occur when power is applied to the StampWorks lab board. When completed, your
StampWorks breadboard will look like this:

Move the StampWorks lab board power switch to ON. The green ON LED (green) should illuminate. If
it doesn’t, make sure that wall transformer is plugged into a live socket and that there are no wiring
errors with your setup.

Start the BASIC Stamp II software editor and enter the following lines of code:

' {$STAMP BS2}
DEBUG "The StampWorks lab is ready!"

Now run the program. If all went well, the program will be downloaded to the Stamp and a DEBUG
window will appear on screen.

Preparing your StampWorks Lab

Page 12 • StampWorks Manual Version 1.2

If an error occurs, check the following items:

• Is the BASIC Stamp II plugged into the NX-1000 board correctly?
• Is the StampWorks lab board power switch set to ON? Is the green ON LED lit?
• Is the programming cable connected between the PC and the StampWorks lab board?
• Have you (manually) selected the wrong PC com port?
• Is the PC com port being used by another program?

When the DEBUG window appears and tells you that the StampWorks lab is ready, it’s time to talk
about Stamp programming.

Connecting a Chip

There are two ways to draw a schematic. One way is considered
“chip-centric” in which I/O pins appear on the chip according to
their physical location. StampWorks has drawn schematics for
efficiency, meaning that I/O pins are placed to make the
schematic legible. I/O pins on all chips are counted according to
their indicator, starting with Pin 1 and counting in a counter-
clockwise direction.

Programming Essentials

StampWorks Manual Version 1.2 • Page 13

Programming Essentials

Contents of a Working Program

In Section 1 of the BASIC Stamp II manual you were introduced to the BASIC Stamp, its architecture
and the concepts of variables and constants. In this section, we’ll introduce the various elements of a
program: linear code, branching, loops and subroutines.

The examples in this discussion use pseudo-code to demonstrate and describe program structure.
Italics are used to indicate the sections of pseudo-code that require replacement with valid
programming statements in order to allow the example to compile and run correctly. You need not
enter any of the examples here as all of these concepts will be used in the experiments that follow.

People often think of computers and microcontrollers as “smart” devices and yet, they will do nothing
without a specific set of instructions. This set of instructions is called a program. It is our job to write
the program. Stamp programs are written in a programming language called PBASIC, a Parallax-
specific version of the BASIC (Beginners All-purpose Symbolic Instruction Code) programming
language. BASIC is very popular because of its simplicity and English-like syntax.

A working program can be as simple as a list of statements. Like this:

statement 1
statement 2
statement 3
END

This is a very simple, yet valid program structure. What you’ll find, however, is that most programs
do not run in a straight, linear fashion like the listing above. Program flow is often redirected with
branching, looping and subroutines, with short linear sections in between. The requirements for
program flow are determined by the goal of the program and the conditions under which the
program is running.

Programming Essentials

Page 14 • StampWorks Manual Version 1.2

Branching – Redirecting the Flow of a Program

A branching command is one that causes the flow of the program to change from its linear path. In
other words, when the program encounters a branching command, it will, in almost all cases, not be
running the next [linear] line of code. The program will usually go somewhere else. There are two
categories of branching commands: unconditional and conditional. PBASIC has two commands, GOTO
and GOSUB that cause unconditional branching.

Here’s an example of an unconditional branch using GOTO:

Label:
 statement 1
 statement 2
 statement 3
 GOTO Label

We call this an unconditional branch because it always happens. GOTO redirects the program to
another location. The location is specified as part of the GOTO command and is called an address.
Remember that addresses start a line of code and are followed by a colon (:). You’ll frequently see
GOTO at the end of the main body of code, forcing the program statements to run again.

Conditional branching will cause the program flow to change under a specific set of circumstances.
The simplest conditional branching is done with IF-THEN construct. The PBASIC IF-THEN construct
is different from other flavors of BASIC. In PBASIC, THEN is always followed by a valid program
address (other BASICs allow a variety of programming statements to follow THEN). If the condition
statement evaluates as TRUE, the program will branch to the address specified. Otherwise, it will
continue with the next line of code.

Take a look at this listing:

Start:
 statement 1
 statement 2
 statement 3
 IF (condition) THEN Start

The statements will be run and then the condition is tested. If it evaluates as TRUE, the program will
branch back to the line called Start. If the condition evaluates as FALSE, the program will continue
at the line that follows the IF-THEN construct.

Programming Essentials

StampWorks Manual Version 1.2 • Page 15

As your requirements become more sophisticated, you’ll find that you’ll want your program to branch
to any number of locations based on a condition. One approach is to use multiple IF-THEN
constructs.

IF (condition_0) THEN Label_0
IF (condition_1) THEN Label_1
IF (condition_2) THEN Label_2

This approach is valid and does get used. Thankfully, PBASIC has a special command, BRANCH, that
allows a program to jump to any number of addresses based on the value of a variable. This is very
handy because the conditions we’ve referred to in the text are often checking the value of a control
variable. BRANCH is a little more complicated in its setup, but very powerful in that it can replace
multiple IF-THEN statements. BRANCH requires a control variable and a list of addresses

In the case of a single control variable, the previous listing can be replaced with one line of code:

BRANCH controlVar, [Label_0, Label_1, Label_2]

When controlVar is zero, the program will branch to Label_0, when controlVar is one the
program will branch to Label_1 and so on.

Looping – Running Code Again and Again

Looping causes sections of the program to be repeated. Looping often uses unconditional and
conditional branching to create the various looping structures. Here’s an example of unconditional
looping:

Label:
 statement 1
 statement 2
 statement 3
 GOTO Label

By using GOTO the statements are unconditionally repeated, or looped. By using IF-THEN, we can
add a conditional statement to the loop. The next few examples are called conditional looping. The
loops will run under specific conditions. Conditional programming is what gives microcontrollers their
“smarts.”

Programming Essentials

Page 16 • StampWorks Manual Version 1.2

Label:
 statement 1
 statement 2
 statement 3
 IF (condition) THEN Label

With this loop structure, statements will be run so long as the condition evaluates as TRUE. When the
condition is evaluated as FALSE, the program will continue at the line following the IF-THEN
statement. It’s important to note that in the previous listing the statements will always run at least
once, even if the condition is FALSE.

To prevent this from taking place, you need to test the condition before running the statements. The
code can be written as follows so that the statements (1 – 3) will only run when the condition is
TRUE. When the condition evaluates as FALSE, the program continues at Label_2.

Label_1:
 IF NOT (condition) THEN Label_2
 statement 1
 statement 2
 statement 3
 GOTO Label_1

Label_2:
 statement 4

The final example of conditional looping is the programmed loop using the FOR-NEXT construct.

FOR controlVar = startVal TO endVal STEP stepSize
 statement 1
 statement 2
 statement 3
NEXT

The FOR-NEXT construct is used to cause a section of code to execute (loop) a specific number of
times. FOR-NEXT uses a control variable to determine the number of loops. The size of the variable
will determine the upper limit of loop iterations. For example, the upper limit when using a byte-sized
control variable would be 255.

The STEP option of FOR-NEXT is used when the loop needs to count increments other than one. If,
for example, the loop needed to count even numbers, the code would look something like this:

Programming Essentials

StampWorks Manual Version 1.2 • Page 17

FOR controlVar = 2 TO 20 STEP 2
 statement 1
 statement 2
 statement 3
NEXT

Subroutines – Reusable Code that Saves Program Space

The final programming concept we’ll discuss is the subroutine. A subroutine is a section of code that
can be called (run) from anywhere in the program. GOSUB is used to redirect the program to the
subroutine code. The subroutine is terminated with the RETURN command. RETURN causes the
program to jump back to the line of code that follows the calling GOSUB command.

Start:
 GOSUB MySub
 PAUSE 1000
 GOTO Start

MySub:
 statement 1
 statement 2
 statement 3
 RETURN

In this example, the code in the MySub is executed and then the program jumps back to the line
PAUSE 1000.

Programming Essentials

Page 18 • StampWorks Manual Version 1.2

The Elements of PBASIC Style

Like most versions of the BASIC programming language, PBASIC is very forgiving and the compiler
enforces no particular formatting style. So long as the source code is syntactically correct, it will
compile and download to the Stamp without trouble.

Why, then, would one suggest a specific style for PBASIC? Consider this: Over two million BASIC
Stamps have been sold and there are nearly 2500 members of the BASIC Stamp mailing list (on
Yahoo! Groups). This makes it highly likely that you'll be sharing your PBASIC code with someone, if
not co-developing a BASIC Stamp-oriented project. Writing code in an organized, predictable manner
will save you – and your potential colleagues – time; in analysis, in troubleshooting and especially
when you return to a project after a long break.

The style guidelines presented here are just that: guidelines. They have been developed from style
guidelines used by professional programmers using other high-level languages such as Java™,
C/C++ and Visual Basic®. Use these guidelines as is, or modify them to suit your needs. The key is
selecting a style the works well for you or your organization and sticking to it.

1. Do It Right The First Time

Many programmers, especially new ones, fall into the "I'll slug it out now and fix it later." trap.
Invariably, the "fix it later" part never seems to happen and sloppy code makes its way into
production projects. If you don't have time to do it right, when will you have time to do it again?

Start clean and you'll be less likely to introduce errors in your code. And if errors do pop up,
clean formatting will make them easier to find and fix.

2. Be Organized and Consistent

Using a blank program template will help you organize your programs and establish a consistent
presentation.

3. Use Meaningful Names

Be verbose when naming constants, variables and program labels. The compiler will allow names
up to 32 characters long. Using meaningful names will reduce the number of comments and
make your programs easier to read, debug and maintain.

Programming Essentials

StampWorks Manual Version 1.2 • Page 19

4. Naming Constants

Begin constant names with an uppercase letter and use mixed case, using uppercase letters at
the beginning of new words within the name:

AlarmCode CON 25

5. Naming Variables

Begin variable names with a lowercase letter and use mixed case, using uppercase letters at the
beginning of new words within the name. Avoid the use of internal variable names (such as B0
or W1):

waterLevel VAR Word

6. Naming Program Labels

Begin program labels with an uppercase letter, used mixed case, separate words within the label
with an underscore character and begin new words with an uppercase letter. Labels should be
preceded by at least one blank line, begin in column 1 and be terminated with a colon (except
after GOTO and THEN where they appear at the end of the line and without a colon):

Print_String:
 READ eeAddr, char
 IF (char = 0) THEN Print_String_Exit
 DEBUG char
 eeAddr = eeAddr + 1
 GOTO Print_String

Print_String_Exit:
 RETURN

Programming Essentials

Page 20 • StampWorks Manual Version 1.2

7. PBASIC Keywords

All PBASIC language keywords, including VAR, CON and serial/debugging format modifiers (DEC,
HEX, BIN) should be uppercase:

Main:
 DEBUG "BASIC Stamp", CR
 END

8. Variable Types

Variable types should be be in mixed case and start with an uppercase letter:

status VAR Bit
counter VAR Nib
ovenTemp VAR Byte
rcValue VAR Word

9. Indent Nested Code

Nesting blocks of code improves readability and helps reduce the introduction of errors.
Indenting each level with two spaces is recommended to make the code readable without taking
up too much space:

Main:
..FOR outerLoop = 1 TO 10
....FOR innerLoop = 1 TO 10
......DEBUG DEC outerLoop, TAB, DEC innerLoop, TAB
......DEBUG DEC (outerLoop * innerLoop)
......PAUSE 100
....NEXT
..NEXT

Note: The dots are used to illustrate the level of nesting and are not a part of the code.

Programming Essentials

StampWorks Manual Version 1.2 • Page 21

10. Be Generous With Whitespace

Whitespace (spaces and blank lines) has no effect compiler or BASIC Stamp performance, so be
generous with it to make listings easier to read. As suggested in #6 above, allow at lease one
blank line before program labels (two blanks lines before a subroutine label is recommended).
Separate items in a parameter list with a space:

Main:
 BRANCH task, [Update_Motors, Scan_IR, Close_Gripper]
 GOTO Main

Update_Motors:
 PULSOUT leftMotor, leftSpeed
 PULSOUT rightMotor, rightSpeed
 PAUSE 20
 Task = (task + 1) // NumTasks
 GOTO Main

An exception to this guideline is with the bits parameter used with SHIFTIN and SHIFTOUT. In
this case, format without spaces:

 SHIFTIN A2Ddata, A2Dclock, MSBPost, [result\9]

11. IF-THEN Conditions

Enclose IF-THEN condition statements in parenthesis:

Check_Temp:
 IF (indoorTemp >= setPoint) THEN AC_On

The StampWorks files (available for download fromwww.parallaxinc.com) include a blank
programming tempalate (Blank.BS2) that will help you get started writing organized code. It's up to
you to follow the rest of the guidelines above – or develop and use guidelines of your own.

Time to Experiment

StampWorks Manual Version 1.2 • Page 23

Time to Experiment

Learn the Programming Concepts

What follows is a series of programming experiments that you can build and run with your
StampWorks lab. The purpose of these experiments is to teach programming concepts and the use of
external components with the BASIC Stamp. The experiments are focused and designed so that as
you gain experience, you can combine the individual concepts to produce sophisticated programs.

Building the Projects

This section of the manual is simple but important because you will learn important programming
lessons and construction techniques using your StampWorks lab. As you move through the rest of
the manual, construction details will not be included (you’ll be experienced by then and can make
your own choices) and the discussion of the program will be less verbose, focusing specifically on
special techniques or external devices connected to the BASIC Stamp.

What to do Between Projects

The circuit from one project may not be electrically compatible with another and could, in some
cases, cause damage to the BASIC Stamp if the old program is run with the new circuit. For this
reason, a blank program should be downloaded to the Stamp before connecting the new circuit. This
will protect the Stamp by resetting the I/O lines to inputs. Here’s a simple, two-line program that will
clear and reset the Stamp.

' {$STAMP BS2}
DEBUG "Stamp clear."

For convenience, save this program to a file called CLEAR.BS2.

Experiment #1: Flash an LED

StampWorks Manual Version 1.2 • Page 25

Experiment #1:
Flash An LED

The purpose of this experiment is to flash an LED with the BASIC Stamp. Flashing LEDs are often
used as alarm indicators.

New PBASIC Elements/Commands:

• CON
• HIGH
• LOW
• PAUSE
• GOTO

Building The Circuit

All StampWorks experiments use a dashed line to show parts that are already on the NX-1000 board.
The LED is available on the “LED MONITOR 16 CHANNELS” part of the board.

Since the StampWorks lab board has the LEDs built in, all you have to do is connect one to the BASIC
Stamp.

1. Start with a six-inch (15 cm) white wire. Strip ¼-inch (6 mm) of insulation from each end.
2. Plug one end into BASIC Stamp Port 0.
3. Plug the other end into LED Monitor Channel 0

Experiment #1: Flash an LED

Page 26 • StampWorks Manual Version 1.2

' ==
'
' File...... Ex01 - Blink.BS2
' Purpose... LED Blinker
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' Blinks an LED connected to P0

' --
' I/O Definitions
' --

LEDpin CON 0 ' LED connected to Pin 0

' --
' Constants
' --

DelayTime CON 500 ' delay time in milliseconds

' --
' Program Code
' --

Main:
 HIGH LEDpin ' turn LED on
 PAUSE DelayTime ' pause for a bit
 LOW LEDpin ' turn LED off
 PAUSE DelayTime ' pause while off
 GOTO Main ' do it again

 END

Experiment #1: Flash an LED

StampWorks Manual Version 1.2 • Page 27

Behind The Scenes

Each of the Stamp’s I/O pins has three bits associated with its control. A bit in the Dirs word
determines whether the pin is an input (bit = 0) or an output (bit = 1). If the pin is configured as an
output, the current state of the pin is stored in the associated bit in the Outs word. If the pin is
configured as an input, the current pin value is taken from the associated bit in the Ins word.

HIGH and LOW actually perform two functions with one command: the selected pin is configured as
an output and the value is set in the Outs word (1 for HIGH, 0 for LOW).

For example, this line of code:

 HIGH 0

performs the same function as:

 Dir0 = 1 ' make Pin 0 an output
 Out0 = 1 ' set Pin 0 high

Experiment #2: Flash an LED (Version 2)

StampWorks Manual Version 1.2 • Page 29

Experiment #2:
Flash An LED (Version 2)

The purpose of this experiment is to flash an LED with the BASIC Stamp. The method in this
experiment adds flexibility to the LED control.

New PBASIC elements/commands to know:

• VAR
• Out0 – Out15
• Dir0 – Dir15
• Byte
• Bit0 – Bit15

Building The Circuit.

Use the same circuit as in Experiment #1.

' ==
'
' File...... Ex02 - Blink2.BS2
' Purpose... LED Blinker - Version 2
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' Blinks an LED connected to Pin 0. LED on-time and off-time can be set
' independently of each other.

Experiment #2: Flash an LED (Version 2)

Page 30 • StampWorks Manual Version 1.2

' --
' I/O Definitions
' --

MyLED VAR Out0 ' LED connected to Pin 0

' --
' Constants
' --

DelayOn CON 1000 ' on-time time in milliseconds
DelayOff CON 250 ' off-time in milliseconds

On CON 1
Off CON 0

' --
' Initialization
' --

Initialize:
 Dir0 = %1 ' make LED pin an output

' --
' Program Code
' --

Main:
 MyLED = On
 PAUSE DelayOn ' pause for "on" time
 MyLED = Off
 PAUSE DelayOff ' pause for "off" time
 GOTO Main ' do it again

 END

Can you explain what’s going on?

Since MyLED is a bit-sized variable, Bit0 of cntr will control it. It works like this: When cntr is odd
(1, 3, 5, etc.), Bit0 will be set (1), causing the LED to light. When cntr is an even number, Bit0
will be clear (0), causing the LED to be off.

Experiment #3: Display a Counter with LEDs

StampWorks Manual Version 1.2 • Page 31

Experiment #3:
Display a Counter with LEDs

The purpose of this experiment is to display a byte-sized value with LEDs. Multiple LEDs are
frequently used as complex status or value indicators.

New PBASIC elements/commands to know:

• OutL, OutH
• DirL, DirH
• FOR-NEXT

Building The Circuit.

These LEDs are denoted by the “LED MONITOR 16 CHANNELS” notation on the NX-1000 board.

Experiment #3: Display a Counter with LEDs

Page 32 • StampWorks Manual Version 1.2

Since the StampWorks lab board has the LEDs built in, all you have to do is connect one to the BASIC
Stamp.

1. Start with eight, six-inch (15 cm) white wires. Strip ¼-inch (6 mm) of insulation from the
ends of each.

2. Plug one end of a wire into BASIC Stamp Port 0.
3. Plug the other end into LED Monitor Channel 0.
4. Repeat Steps 2 and 3 for LED Monitor Channels 1-7 (Stamp pins 1– 7) using more wire.

' ==
'
' File...... Ex03 - LED Counter.BS2
' Purpose... Binary Counter
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' Displays a binary counter on Pins 0 - 7

' --
' I/O Definitions
' --

LEDs VAR OutL ' LEDs on Pins 0 - 7

' --
' Constants
' --

MinCount CON 0 ' counter start value
MaxCount CON 255 ' counter end value
DelayTime CON 100 ' delay time in milliseconds

Experiment #3: Display a Counter with LEDs

StampWorks Manual Version 1.2 • Page 33

' --
' Variables
' --

counter VAR Byte

' --
' Initialization
' --

Initialize:
 DirL = %11111111 ' make pins 0 - 7 outputs

' --
' Program Code
' --

Main:
 FOR counter = MinCount TO MaxCount ' loop through all count values
 LEDs = counter ' show count on LEDs
 PAUSE DelayTime ' pause before next number
 NEXT
 GOTO Main ' do it again

 END

Behind The Scenes

As explained in Experiment #1, the state of the BASIC Stamp’s output pins are stored in a memory
area called Outs (OutL is the lower byte of the Outs word). Since OutL is part of the BASIC
Stamp’s general-purpose (RAM) memory, values can be written to and read from it. In this case,
copying the value of our counter to OutL (alias for LEDs) causes the value of the counter to be
displayed on the StampWorks LEDs.

Challenge

Modify the program to count backward.

Experiment #4: Science Fiction LED Display

StampWorks Manual Version 1.2 • Page 35

Experiment #4:
Science Fiction LED Display

The purpose of this experiment is to “ping-pong” across eight LEDs to create a Sci-Fi type display.
Circuits like this often are used in film and television props.

New PBASIC elements/commands to know:

• << (Shift Left operator)
• >> (Shift Right operator)
• IF-THEN

Building The Circuit

Use the same circuit as in Experiment #3.

' ==
'
' File...... Ex04 - Ping Pong.BS2
' Purpose... Ping-Pong LED Display
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' "Ping-Pongs" an LED (one of eight).

' --
' I/O Definitions
' --

LEDs VAR OutL ' LEDs on Pins 0 - 7

Experiment #4: Science Fiction LED Display

Page 36 • StampWorks Manual Version 1.2

' --
' Constants
' --

DelayTime CON 100 ' delay time in milliseconds

' --
' Initialization
' --

Initialize:
 DirL = %11111111 ' make all pins outputs
 LEDs = %00000001 ' start with one LED on (pin 0)

' --
' Program Code
' --

Go_Forward:
 PAUSE DelayTime ' show the LED
 LEDs = LEDs << 1 ' shift lit LED to the left
 IF (LEDs = %10000000) THEN Go_Reverse ' test for final position
 GOTO GoForward ' continue in this direction

Go_Reverse:
 PAUSE DelayTime ' show the LED
 LEDs = LEDs >> 1 ' shift lit LED to the right
 IF (LEDs = %00000001) THEN Go_Forward ' test for final position
 GOTO GoReverse ' continue in this direction

 END

Behind The Scenes

This project demonstrates the ability to directly manipulate the BASIC Stamp’s outputs. The program
initializes the LEDs to %00000001 (LED 0 is on) then uses the shift-left operator (<<) to move the lit
LED one position to the left. With binary numbers, shifting left by one is the same as multiplying by
two. Shifting right by one (>>) is the same as dividing by two.

Both major sections of the code use IF-THEN to test for the limits of the display, causing the
program to branch to the other section when a limit is reached.

Experiment #5: LED Graph (Dot or Bar)

StampWorks Manual Version 1.2 • Page 37

Experiment #5:
LED Graph (Dot or Bar)

The purpose of this experiment is to create a configurable (dot or bar) LED graph. This type of graph
is very common on audio equipment, specifically for VU (volume) meters. The value for the graph in
the experiment will be taken from the position of a potentiometer.

New PBASIC elements/commands to know:

• Word
• RCTIME
• */ (Star-Slash operator)
• GOSUB-RETURN
• DCD

Building The Circuit

Add this circuit to Experiment #4.

Experiment #5: LED Graph (Dot or Bar)

Page 38 • StampWorks Manual Version 1.2

1. Using red wire (cut as required), connect the Vdd (+5) rail to socket A15.
2. Plug a 0.1 uF (104K) capacitor into sockets B14 and B15.
3. Plug a 220-ohm (RED-RED-BROWN) resistor into sockets C10 and C14.
4. Using white wire, connect socket A10 to BASIC Stamp Port 15.
5. Using white wire, connect socket E14 to the wiper of the 10K potentiometer
6. Using black wire, connect the Vss (ground) rail to the bottom terminal of the 10K

potentiometer.

' ==
'
' File...... Ex05 - LED Graph.BS2
' Purpose... LED Bar Graph
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated...
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' Displays a linear (bar) or dot graph using 8 LEDs

' --
' I/O Definitions
' --

LEDs VAR OutL ' LED outputs
PotPin CON 15 ' pot wiper connects to pin 15

' --
' Constants
' --

DotGraf CON 0 ' define graph types
BarGraf CON 1
GraphMode CON BarGraf ' define current graph mode

Experiment #5: LED Graph (Dot or Bar)

StampWorks Manual Version 1.2 • Page 39

On CON 1
Off CON 0

Scale CON $005F ' scale value to make 0 .. 255

' Scale CON $0028 ' scale for BS2sx
' Scale CON $0027 ' sclae for BS2p

' --
' Variables
' --

rawValue VAR Word ' raw value from pot
grafValue VAR Byte ' graph value
bits VAR Byte ' highest lighted bit
newBar VAR Byte ' workspace for bar graph

' --
' Initialization
' --

Initialize:
 DirL = %11111111 ' make low pints outputs

' --
' Program Code
' --

Main:
 HIGH PotPin ' discharge cap
 PAUSE 1 ' for 1 millisecond
 RCTIME PotPin, 1, rawValue ' read the Pot

 grafValue = rawValue */ Scale ' scale grafVal (0 - 255)

 GOSUB Show_Graph ' show it
 PAUSE 50
 GOTO Main ' do it again

 END

' --
' Subroutines

Experiment #5: LED Graph (Dot or Bar)

Page 40 • StampWorks Manual Version 1.2

' --

Show_Graph:
 IF (GraphMode = BarGraf) THEN Show_Bar ' jump to graph mode code

Show_Dot:
 LEDs = DCD (grafValue / 32) ' show dot value
 RETURN

Show_Bar:
 bits = DCD (grafValue / 32) ' get highest bit
 newBar = 0

Build_Bar:
 IF (bits = 0) THEN Bar_Done ' all bar LEDs lit?
 newBar = newBar << 1 ' no - shift left
 newBar.Bit0 = On ' light low end
 bits = bits >> 1 ' mark bit lit
 GOTO Build_Bar ' continue

Bar_Done:
 LEDs = newBar ' output new level
 RETURN

Behind The Scenes

After initializing the outputs, this program reads the 10K potentiometer (located on the StampWorks
lab board) with RCTIME. Using DEBUG to display the raw value, it was determined that RCTIME
returned values between zero (pot fully counter-clockwise) and 685 (pot turned fully clockwise).
Since grafVal is a byte-sized variable, rawVal must be scaled down to fit.

To determine the scaling multiplier, divide 255 (largest possible value for grafVal) by 685 (highest
value returned in rawVal). The result is 0.372.

Dealing with fractional values within PBASIC’s integer math system is made possible with the */
(star-slash) operator. The parameter for */ is a 16-bit (word) variable. The upper eight bits (high
byte) are multiplied as a whole value. The lower eight bits (low byte) are multiplied as a fractional
value.

To determine the value of the fractional byte, multiply the desired decimal fractional value by 255
and convert to hex.

Experiment #5: LED Graph (Dot or Bar)

StampWorks Manual Version 1.2 • Page 41

Example:

 0.372 x 255 = 95 (or $5F)

Since the multiplier in the experiment is 0.372, the */ value is $005F.

The program uses the DCD operator to determine highest lighted bit value from grafVal. With eight
LEDs in the graph, grafVal is divided by 32, forcing the result of DCD to output values from
%00000001 (DCD 0) to %10000000 (DCD 7).

In Dot mode, this is all that is required and a single LED is lit. In Bar Mode, the lower LEDs must be
filled in. This is accomplished by a loop. The control value for the loop is the variable, bits, which
also calculated using DCD. In this loop, bits will be tested for zero to exit, so each iteration through
the loop will decrement (decrease) this value.

If bits is greater than zero, the bar graph workspace variable, newBar, is shifted left and its bit 0 is
set. For example, if DCD returned %1000 in bits, here’s how bits and newBar would be affected
through the loop:

bits newBar

1000 0001
0100 0011
0010 0111
0001 1111
0000 (done - exit loop and display value)

The purpose for the variable, newBar, is to prevent the LEDs from flashing with each update. This
allows the program to start with an “empty” graph and build to the current value. With this
technique, the program does not have to remember the value of the previous graph.

Experiment #6: A Simple Game

StampWorks Manual Version 1.2 • Page 43

Experiment #6:
A Simple Game

The purpose of this experiment is to create a simple, slot machine type game with the BASIC Stamp.

New PBASIC elements/commands to know:

• RANDOM
• & (And operator)
• FREQOUT
• BUTTON
• LOOKUP

Building The Circuit

Note: Later versions of the StampWorks lab board come with a built-in audio amplifier. Attach an 8-
ohm speaker to the output of the amplifier to get the best sound from this project.

Experiment #6: A Simple Game

Page 44 • StampWorks Manual Version 1.2

You may wish to substitute the piezo speaker on the StampWorks lab board with the one in the kit,
which seems to have a higher volume.

1. Using white wires, connect BASIC Stamp Ports 0 – 5 to LEDs 0 – 5.
2. Using white wire, connect BASIC Stamp Port 6 to the + side of the Piezo speaker.
3. Using black wire, connect the – side of the Piezo speaker to ground.
4. Using a white wire connect BASIC Stamp Port 7 to Pushbutton D0.

' ==
'
' File...... Ex06 - Las Vegas.BS2
' Purpose... Stamp Game
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' Stamp-based slot machine game that uses lights and sound.

' --
' I/O Definitions
' --

LEDs VAR OutL ' LED outputs
Speaker CON 6 ' speaker output
PlayBtn CON 7 ' button input to play game

' --
' Variables
' --

randW VAR Word ' random number
pattern VAR Byte ' light pattern
tone VAR Word ' tone output

Experiment #6: A Simple Game

StampWorks Manual Version 1.2 • Page 45

swData VAR Byte ' workspace variable for BUTTON
delay VAR Word ' delay while "spinning"
spin1 VAR Byte ' loop counter
spin2 VAR Byte ' loop counter

' --
' Initialization
' --

Initialize:
 DirL = %00111111 ' make LEDs outputs

' --
' Program Code
' --

Main:
 GOSUB Get_Random ' get a random number and tone
 FREQOUT Speaker,35,tone ' sound the tone
 PAUSE 100
 BUTTON PlayBtn, 0, 255, 10, swData, 1, Spin ' check for play
 GOTO Main

Spin:
 LEDs = %00111111 ' simulate machine reset
 PAUSE 750
 LEDs = %00000000
 PAUSE 500
 delay = 75 ' initialize delay

 FOR spin1 = 1 TO 25 ' spin the wheel
 GOSUB Get_Random ' get random number
 FREQOUT Speaker, 25, 425 ' wheel click
 PAUSE delay ' pause between clicks
 delay = delay */ $0119 ' multiply delay by 1.1
 NEXT

 IF pattern = %00111111 THEN You_Win ' if all lit, you win
 FREQOUT Speaker, 1000, 150 ' otherwise, groan...
 LEDs = %00000000 ' clear LEDs
 PAUSE 1000
 GOTO Main ' do it again

You_Win: ' winning lights/sound display
 FOR spin1 = 1 TO 5

Experiment #6: A Simple Game

Page 46 • StampWorks Manual Version 1.2

 FOR spin2 = 0 TO 3
 LOOKUP spin2, [$00, $0C, $12, $21], LEDs
 LOOKUP spin2, [665, 795, 995, 1320], tone
 FREQOUT Speaker, 35, tone
 PAUSE 65
 NEXT
 NEXT

 LEDs = %00000000 ' clear LEDs
 PAUSE 1000
 GOTO Main ' do it again

 END

' --
' Subroutines
' --

Get_Random:
 RANDOM randW ' get pseudo-random number
 tone = randW & $7FF ' don't let tone go too high
 pattern = randW & %00111111 ' mask out unused bits
 LEDs = pattern ' show the pattern
 RETURN

Behind The Scenes

This program demonstrates how to put more randomness into the pseudo-random nature of the
RANDOM command. Adding a human element does it.

The program waits in a loop called Attention. The top of this loop calls Get_Random to create a
pseudo-random value, a tone for the speaker and to put the new pattern on the LEDs. On returning
to Attention, the tone is played and the button is checked for a press. The program will loop
through Attention until you press the button.

The BUTTON command is used to debounce the input. Here’s what gives the program its randomness:
the time variations between button presses. When the button is pressed, the LEDs are lit and cleared
to simulate the game resetting. Then, a FOR-NEXT loop is used to simulate the rolling action of a slot
machine. For each roll, a “click” sound is generated and the delay between clicks is modified to
simulate natural decay (slowing) of the wheel speed.

Experiment #6: A Simple Game

StampWorks Manual Version 1.2 • Page 47

If all six LEDs are lit after the last spin, the program branches to You_Win. This routine uses LOOKUP
to play a preset pattern of LEDs and tones before returning to the top of the program. If any of the
LEDs is not lit, a groan will be heard from the speaker and the game will restart.

Challenge

Modify the game so that less than six LEDs have to light to for a win.

Experiment #7: A Lighting Controller

StampWorks Manual Version 1.2 • Page 49

Experiment #7:
A Lighting Controller

The purpose of this experiment is to create a small lighting controller, suitable for holiday trees and
outdoor decorations. The outputs of this circuit will be LEDs only (To control high-voltage lighting
take a look at Matt Gilliland’s Microcontroller Application Cookbook).

New PBASIC elements/commands to know:

• DATA
• MIN
• // (Modulus operator)
• BRANCH

Building The Circuit.

Experiment #7: A Lighting Controller

Page 50 • StampWorks Manual Version 1.2

1. Using white wires, connect BASIC Stamp Ports 0–5 to LEDs 0– 5.
2. Using red wire, connect the Vdd (+5) rail to socket A15.
3. Plug a 0.1 uF (104K) capacitor into sockets B14 and B15.
4. Plug a 220-ohm (RED-RED-BROWN) resistor into sockets C10 and C14.
5. Using white wire, connect socket A10 to BASIC Stamp Port 6.
6. Using white wire, connect socket E14 to the top terminal of the 10K potentiometer.
7. Using black wire, connect the Vss (ground) rail to the wiper (middle terminal) of the 10K

potentiometer.
8. Using a white wire connect BASIC Stamp Port 7 to Pushbutton D7.

' ==
'
' File...... Ex07 - Light Show.BS2
' Purpose... Simple lighting controller
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' Mini light show controller with variable speed and multiple patterns.

' --
' I/O Definitions
' --

Select CON 7 ' pattern select input
PotPin CON 6 ' speed control Pot input
Lights VAR OutL ' light control outputs

' --
' Constants
' --

Scale CON $018A ' convert pot input to 0 - 1000

Experiment #7: A Lighting Controller

StampWorks Manual Version 1.2 • Page 51

' Scale CON $00A0 ' scale for BS2sx
' Scale CON $009E ' scale for BS2p

' --
' Variables
' --

delay VAR Word ' pause time between patterns
btnVar VAR Byte ' workspace for BUTTON
mode VAR Byte ' selected mode
offset VAR Byte ' offset into light patterns
randW VAR Word ' workspace for RANDOM

' --
' EEPROM Data
' --

SeqA DATA %000001, %000010, %000100, %001000, %010000, %100000
SeqB DATA %100000, %010000, %001000, %000100, %000010
 DATA %000001, %000010, %000100, %001000, %010000
SeqC DATA %000000, %001100, %010010, %100001
SeqD DATA %100100, %010010, %001001
SeqE DATA %0

AMax CON SeqB - SeqA ' calculate length of sequence
BMax CON SeqC - SeqB
CMax CON SeqD - SeqC
DMax CON SeqE - SeqD

' --
' Initialization
' --

Initialize:
 DirL = %00111111 ' LED control lines are outputs

' --
' Program Code
' --

Main:
 HIGH PotPin ' discharge cap
 PAUSE 1

Experiment #7: A Lighting Controller

Page 52 • StampWorks Manual Version 1.2

 RCTIME PotPin, 1, delay ' read speed pot
 delay = (delay */ Scale) MIN 50 ' calculate delay (50 ms ~ 1 sec)
 PAUSE delay ' wait between patterns

Switch_Check:
 BUTTON Select, 0, 255, 0, btnVar, 0, Show ' new mode?
 mode = mode + 1 // 5 ' yes, update mode var

Show:
 BRANCH mode, [ModeA, ModeB, ModeC, ModeD, ModeE]
 GOTO Main

' --
' Subroutines
' --

ModeA:
 offset = offset + 1 // AMax ' update offset (0 - 5)
 READ (SeqA + offset), Lights ' output new light pattern
 GOTO Main ' repeat

ModeB:
 offset = offset + 1 // BMax
 READ (SeqB + offset), Lights
 GOTO Main

ModeC:
 offset = offset + 1 // CMax
 READ (SeqC + offset), Lights
 GOTO Main

ModeD:
 offset = offset + 1 // DMax
 READ (SeqD + offset), Lights
 GOTO Main

ModeE:
 RANDOM randW ' get random number
 Lights = randW & %00111111 ' light random channels
 GOTO Main

Behind The Scenes

Overall, this program is simpler than it first appears. The main body of the program is a loop. Timing
through the main loop is controlled by the position of the potentiometer. RCTIME is used to read the

Experiment #7: A Lighting Controller

StampWorks Manual Version 1.2 • Page 53

pot and during development the maximum pot reading was found to be 648. Multiplying the
maximum pot value by 1.54 (delay */ $018A) scales the maximum value to 1000 for a one-second
delay. The MIN operator is used in the delay scaling calculation to ensure the shortest loop-timing
delay is 50 milliseconds.

The code at Switch_Check looks to see if button D7 is pressed. If it is, the variable, mode, is
incremented (increased by 1). The modulus (//) operator is used to keep mode in the range of zero to
four. This works because the modulus operator returns the remainder after a division. Since any
number divided by itself will return a remainder of zero, using modulus in this manner causes mode
to “wrap-around” from four to zero.

The final element of the main loop is called Show. This code uses BRANCH to call the code that will
output the light sequence specified by mode. Modes A through D work similarly, retrieving light
sequences from the BASIC Stamp’s EEPROM (stored in DATA statements). Mode E outputs a random
light pattern.

Take a look at the code section labeled ModeA. The first thing that happens is that the variable,
offset, is updated – again using the “wrap-around” technique with the modulus operator. The value
of offset is added to the starting position of the specified light sequence and the current light
pattern is retrieved with READ. Notice that the DATA statements for each sequence are labeled
(SeqA, SeqB, etc.). Internally, each of these labels is converted to a constant value that is equal to
the starting address of the sequence. The length of each sequence is calculated with these
constants. By using this technique, light patterns can be updated (shortened or lengthened) without
having to modify the operational code called by Show. ModeE is very straightforward, using the
RANDOM function to output new pattern of lights with each pass through the main loop.

Challenge

Add a new lighting sequence. What sections of the program need to be modified to make this work?

Building Circuits On Your Own

StampWorks Manual Version 1.2 • Page 55

Building Circuits On Your Own

With the experience you gained in the previous section, you’re ready to assemble the following
circuits without specific instruction. These projects are fairly simple and you’ll find them electrically
similar to several of the projects that you’ve already built.

Proceed slowly and double-check your connections before applying power. You’re well on your way
to designing your own Stamp-based projects and experiments.

Let’s continue with 7-segment displays....

Using 7-Segment Displays

StampWorks Manual Version 1.2 • Page 57

Using 7-Segment Displays

A 7-segment display is actually seven (eight counting the decimal point) standard LEDs that have
been packaged into a linear shape and arranged as a Figure-8 pattern. The LEDs in the group have a
common element (anode or cathode).

By lighting specific combinations of the LEDs in the package we can create digits and even a few
alpha characters (letters and symbols). Seven-segment LEDs are usually used in numeric displays.

The StampWorks lab has four, common-cathode seven-segment displays. The experiments in this
section will show you how to get the most from these versatile components.

Experiment #8: A Single-Digit Counter

StampWorks Manual Version 1.2 • Page 59

Experiment #8:
A Single-Digit Counter

The purpose of this experiment is to demonstrate the use of seven-segment LED module by creating
a simple decimal counter.

New PBASIC elements/commands to know:

• Nib

Building The Circuit.

Experiment #8: A Single-Digit Counter

Page 60 • StampWorks Manual Version 1.2

' ==
'
' File...... Ex08 - SevenSegs.BS2
' Purpose... 7-Segment Display
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' Displays digits on a 7-segment display.

' --
' I/O Definitions
' --

Segs VAR OutL ' 7-segment LEDs

' --
' Constants
' --

Blank CON %00000000 ' clears the display

' --
' Variables
' --

counter VAR Nib

' --
' EEPROM Data
' --

Experiment #8: A Single-Digit Counter

StampWorks Manual Version 1.2 • Page 61

' Segments .abcdefg
' --------
DecDig DATA %01111110 ' 0
 DATA %00110000 ' 1
 DATA %01101101 ' 2
 DATA %01111001 ' 3
 DATA %00110011 ' 4
 DATA %01011011 ' 5
 DATA %01011111 ' 6
 DATA %01110000 ' 7
 DATA %01111111 ' 8
 DATA %01111011 ' 9

' --
' Initialization
' --

Initialize:
 DirL = %11111111 ' make segments outputs

' --
' Program Code
' --

Main:
 FOR counter = 0 TO 9 ' count
 READ (DecDig + counter), Segs ' put 7-seg pattern on digit
 PAUSE 1000 ' show for about one second
 NEXT
 GOTO Main ' do it all again

 END

Experiment #8: A Single-Digit Counter

Page 62 • StampWorks Manual Version 1.2

Behind The Scenes

This program is very similar to the light show program: a pattern is read from the EEPROM and
output to the LEDs. In this program, sending specific patterns to the seven-segment LED creates the
digits zero through nine.

Challenge

Update the program to create a single-digit HEX counter. Use the patterns below for the HEX digits.

Experiment #9: A Digital Die

StampWorks Manual Version 1.2 • Page 63

Experiment #9:
A Digital Die

The purpose of this experiment is create a digital die (one half of a pair of dice).

Building The Circuit.

Add this pushbutton to the circuit in Experiment #8.

' ==
'
' File...... Ex09 - Roller.BS2
' Purpose... Digital Die
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' This program combines a 7-segment display and a pushbutton input to create
' a single-digit digital die. Displays 1 to 6 when button is pressed.

Experiment #9: A Digital Die

Page 64 • StampWorks Manual Version 1.2

' --
' I/O Definitions
' --

RollBtn CON 15 ' roll button on Pin 15
Segs VAR OutL ' 7-segment LEDs

' --
' Variables
' --

swData VAR Byte ' data for BUTTON command
dieVal VAR Nib ' new die value
spinPos VAR Nib ' spinner position
doSpin VAR Nib ' spinner update control

' --
' EEPROM Data
' --

' abcdefg
' -------
DecDig DATA %01111110 ' 0
 DATA %00110000 ' 1
 DATA %01101101 ' 2
 DATA %01111001 ' 3
 DATA %00110011 ' 4
 DATA %01011011 ' 5
 DATA %01011111 ' 6
 DATA %01110000 ' 7
 DATA %01111111 ' 8
 DATA %01111011 ' 9

Bug DATA %01000000 ' spinning bug
 DATA %00100000
 DATA %00010000
 DATA %00001000
 DATA %00000100
 DATA %00000010

' --
' Initialization
' --

Experiment #9: A Digital Die

StampWorks Manual Version 1.2 • Page 65

Initialize:
 DirL = %01111111 ' create output pins

' --
' Program Code
' --

Main:
 GOSUB Get_Die ' update die value
 PAUSE 5
 ' is the button pressed?
 BUTTON RollBtn, 0, 255, 10, swData, 1, Show_Die
 GOTO Main ' no

Show_Die:
 READ (DecDig + dieVal), Segs ' show the die
 PAUSE 3000 ' - for 3 seconds
 GOTO Main ' go again

 END

' --
' Subroutines
' --

Get_Die:
 dieVal = (dieVal // 6) + 1 ' limit = 1 to 6
 READ (Bug + spinPos), segs ' show spinner pattern
 doSpin = (doSpin + 1) // 7 ' time to update spinner?
 IF (doSpin > 0) THEN Get_DieX ' only if doSpin = 0
 spinPos = spinPos + 1 // 6 ' update spinner

Get_DieX:
 RETURN

Behind The Scenes

This program borrows heavily from what we’ve already done and should be easy for you to
understand. What we’ve done here is added a bit of programming creativity to make a very simple
program visually interesting.

Experiment #9: A Digital Die

Page 66 • StampWorks Manual Version 1.2

There is one noteworthy point: the use of the variable, doSpin. In order to create a random value,
the variable dieVal is updated rapidly until the button is pressed. This rate of change, however, is
too fast to allow for a meaningful display of the rotating “bug.” The variable doSpin, then, acts as a
delay timer, causing the LED “bug” position to be updated every seventh pass through the Get_Die
routine. This allows us to see it clearly and creates an inviting display.

Experiment #10: LED Clock Display

StampWorks Manual Version 1.2 • Page 67

Experiment #10:
LED Clock Display

The purpose of this experiment is create a simple clock display using four, seven-segment LED
modules.

New PBASIC elements/commands to know:

• OutA,OutB,OutC,OutD
• DirA,DirB,DirC,DirD
• In0 - In15
• DIG

Building The Circuit

Experiment #10: LED Clock Display

Page 68 • StampWorks Manual Version 1.2

' ==
'
' File...... Ex10 - Clock.BS2
' Purpose... Simple software clock
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' This program monitors a 1 Hz input signal and uses it as the timebase for
' a software clock.

' --
' I/O Definitions
' --

Segs VAR OutL ' segments
DigSel VAR OutC ' digit select
Tic VAR In15 ' 1 Hz Pulse Generator input

' --
' Constants
' --

DecPoint CON %10000000 ' decimal point bit
Blank CON %00000000 ' all segments off

Dig0 CON %1111 ' digit select control
Dig1 CON %1110
Dig2 CON %1101
Dig3 CON %1011
Dig4 CON %0111

IsLow CON 0 ' Tic input is low
IsHigh CON 1 ' Tic input is high

Experiment #10: LED Clock Display

StampWorks Manual Version 1.2 • Page 69

' --
' Variables
' --

secs VAR Word ' seconds
time VAR Word ' formatted time
digit VAR Nib ' current display digit

' --
' EEPROM Data
' --

' .abcdefg
' --------
DecDig DATA %01111110 ' 0
 DATA %00110000 ' 1
 DATA %01101101 ' 2
 DATA %01111001 ' 3
 DATA %00110011 ' 4
 DATA %01011011 ' 5
 DATA %01011111 ' 6
 DATA %01110000 ' 7
 DATA %01111111 ' 8
 DATA %01111011 ' 9

' --
' Initialization
' --

Initialize:
 DirL = %11111111 ' make segments outputs
 DirC = %1111 ' make digit selects outputs
 DigSel = Dig0 ' all digits off

' --
' Program Code
' --

Main:
 GOSUB Show_Time ' show current digit
 IF (Tic = IsHigh) THEN Inc_Sec ' new second?
 GOTO Main ' do it again

Experiment #10: LED Clock Display

Page 70 • StampWorks Manual Version 1.2

Inc_Sec:
 secs = (secs + 1) // 3600 ' update seconds counter

Waiting:
 GOSUB Show_Time ' show current digit
 IF (Tic = IsLow) THEN Main ' if last tic gone, go back

 ' additional code could go here

 GOTO Waiting ' do tic check again

 END

' --
' Subroutines
' --

Show_Time:
 time = (secs / 60) * 100 ' get minutes, put in hundreds
 time = time + (secs // 60) ' get seconds, put in 10s & 1s
 Segs = Blank ' clear display
 ' enable digit
 LOOKUP digit, [Dig1, Dig2, Dig3, Dig4], digSel
 READ (DecDig + (time DIG digit)), Segs ' put segment pattern in digit
 IF (digit <> 2) THEN Skip_DP
 Segs = Segs + DecPoint ' illuminate decimal point

Skip_DP:
 PAUSE 1 ' show it
 digit = (digit + 1) // 4 ' get next digit
 RETURN

Behind The Scenes

The first two projects with seven-segment displays used only one digit. This project uses all four. A
new problem arises; since the segment (anode) lines of the four displays are tied together, we can
only show one at a time. This is accomplished by outputting the segment pattern then enabling the
desired digit (by making its cathode low).

The goal of this program though, is to create a clock display, which means we want to see all four
digits at the same time. While we can’t actually have all four running at once, we can trick the human
eye into thinking so.

Experiment #10: LED Clock Display

StampWorks Manual Version 1.2 • Page 71

The human eye has a property known as Persistence Of Vision (POV), which causes it to hold an
image briefly. The brighter the image, the longer it holds in our eyes. POV is what causes us to see a
bright spot in our vision after a friend snaps a flash photo. We can use POV to our advantage by
rapidly cycling through each of the four digits, displaying the proper segments for that digit for a
short period. If the cycle is fast enough, the POV of our eyes will cause the all four digits to appear to
be lit at the same time. This process is called multiplexing.

Multiplexing is the process of sharing data lines; in this case, the segment lines to the displays are
being shared. If we didn’t multiplex, 28 output lines would be required to control four seven-segment
displays. That’s 12 more lines than are available on the BASIC Stamp.

The real work in this program happens in the subroutine called Show_Time. Its purpose is to time-
format (MMSS) the seconds counter and update the current digit. Since the routine can only show
one digit at a time, it must be called frequently, otherwise display strobing will occur. This program
will update the display while waiting for other things to happen.

The clock display is created by moving the minutes value (secs / 60) into the thousands and
hundreds columns of the variable time. The remaining seconds (secs // 60) are added to time,
placing them in the tens and ones columns. Here’s how the conversion math works:

Example: 754 seconds

 754 / 60 = 12
 12 x 100 = 1200 (time = 1200)
 754 // 60 = 34
 1200 + 34 = 1234 (time = 1234; 12 minutes and 34 seconds)

Now that the time display value is ready, the segments are cleared for the next update. Clearing the
current segments value keeps the display sharp. If this isn’t done, the old segments value will cause
“ghosting” in the display. A LOOKUP table is used to enable the current digit and the segments for
that digit are READ from an EEPROM DATA table.

The StampWorks display does not have the colon (:) normally found on a digital clock, so we’ll enable
the decimal point behind the second digit. If the current digit is not a second, the decimal point
illumination is skipped. The final steps are a short delay so the digit illuminates and the current digit
variable is updated.

The main loop of this program watches an incoming square-wave signal, produced by the
StampWorks signal generator. When set at 1 Hz, this signal goes from LOW to HIGH once each

Experiment #10: LED Clock Display

Page 72 • StampWorks Manual Version 1.2

second. When this low-to-high transition occurs, the seconds counter is updated. The modulus
operator (//) is used to keep seconds in the range of 0 to 3599 (the range of seconds in one hour).

When the seconds counter is updated, the display is refreshed and then the program waits for the
incoming signal to go low, updating the display during the wait. If the program went right back to the
top and the incoming signal was still high, the seconds counter would be prematurely updated,
causing the clock to run fast. Once the incoming signal does go low, the program loops back to the
top where it waits for the next low-to-high transition from the pulse generator.

Challenge

If the decimal point illumination is modified as follows, what will happen? Modify and download the
program to check your answer.

 segs = segs + (DPoint * time.Bit0) ' illuminate decimal point

Using Character LCDs

StampWorks Manual Version 1.2 • Page 73

Using Character LCDs

While LEDs and seven-segment displays make great output devices, there will be projects that
require providing more complex information to the user. Of course, nothing beats the PC video
display, but these are large, expensive and almost always impractical for microcontroller projects.
Character LCD modules, on the other hand, fit the bill well. These inexpensive modules allow both
text and numeric output, use very few I/O lines and require little effort from the BASIC Stamp.

Character LCD modules are available in a wide variety of configurations: one-line, two-line and four-
line are very common. Screen width is also variable, but is usually 16 or 20 characters for each line.

The StampWorks LCD module (2 lines x 16 characters).
Datasheet is available for download from www.parallaxinc.com.

The StampWorks LCD module connects to the lab board by a 14-pin IDC header. The header is
keyed, preventing the header from being inserted upside-down.

Using Character LCDs

Page 74 • StampWorks Manual Version 1.2

Initialization

The character LCD must be initialized before sending information to it. The projects in this document
initialize the LCD in accordance with the specification for the Hitachi HD44780 controller. The Hitachi
controller is the most popular available and many controllers are compatible with it.

Modes Of Operation

There are two essential modes of operation with character LCDs: sending a character and sending a
command. When sending a character, the RS line is high and the data sent is interpreted as a
character to be displayed at the current cursor position. The code sent is usually the ASCII code FOR
the character. Several non-ASCII characters also are available in the LCD, as well as up to eight user-
programmable custom characters.

Commands are sent to the LCD by taking the RS line low before sending the data. Several standard
commands are available to manage and manipulate the LCD display.

Clear $01 Clears the LCD and moves cursor to first position of first line
Home $02 Moves cursor to first position of first line
Cursor Left $10 Moves cursor to the left
Cursor Right $14 Moves cursor to the right
Display Left $18 Shifts entire display to the left
Display Right $1C Shifts entire display to the right

Connecting The LCD

The StampWorks LCD has a 14-pin IDC connector at the end of its cable. The connector is “keyed”
so that it is always inserted correctly into the StampWorks lab. Simply align the connector key (small
bump) with the slot in the LCD socket and press the connector into the socket until it is firmly seated.

Experiment #11: A Basic LCD Demonstration

StampWorks Manual Version 1.2 • Page 75

Experiment #11:
A Basic LCD Demonstration

This program demonstrates character LCD fundamentals by putting the StampWorks LCD module
through its paces.

New PBASIC elements/commands to know:

• PULSOUT
• HighNib, LowNib
• ^ (Exclusive OR operator)

Building The Circuit

' ==
'
' File...... Ex11 - LCD Demo.BS2
' Purpose... Essential LCD control
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

Experiment #11: A Basic LCD Demonstration

Page 76 • StampWorks Manual Version 1.2

' --
' Program Description
' --

' This program demonstrates essential character LCD control.
'
' The connections for this program conform to the BS2p LCDIN and LCDOUT
' commands. Use this program for the BS2, BS2e or BS2sx. There is a separate
' program for the BS2p.

' --
' I/O Definitions
' --

E CON 0 ' LCD Enable pin (1 = enabled)
RS CON 3 ' Register Select (1 = char)
LCDbus VAR OutB ' 4-bit LCD data bus

' --
' Constants
' --

ClrLCD CON $01 ' clear the LCD
CrsrHm CON $02 ' move cursor to home position
CrsrLf CON $10 ' move cursor left
CrsrRt CON $14 ' move cursor right
DispLf CON $18 ' shift displayed chars left
DispRt CON $1C ' shift displayed chars right
DDRam CON $80 ' Display Data RAM control

' --
' Variables
' --

char VAR Byte ' character sent to LCD
index VAR Byte ' loop counter

' --
' EEPROM Data
' --

Experiment #11: A Basic LCD Demonstration

StampWorks Manual Version 1.2 • Page 77

Msg DATA "THE BASIC STAMP!", 0 ' preload EEPROM with message

' --
' Initialization
' --

Initialize:
 DirL = %11111101 ' setup pins for LCD

LCD_Init:
 PAUSE 500 ' let the LCD settle
 LCDbus = %0011 ' 8-bit mode
 PULSOUT E, 1
 PAUSE 5
 PULSOUT E, 1
 PULSOUT E, 1
 LCDbus = %0010 ' 4-bit mode
 PULSOUT E, 1
 char = %00001100 ' disp on, crsr off, blink off
 GOSUB LCD_Command
 char = %00000110 ' inc crsr, no disp shift
 GOSUB LCD_Command

' --
' Program Code
' --

Main:
 char = ClrLCD ' clear the LCD
 GOSUB LCD_Command
 PAUSE 500
 index = Msg ' get EE address of message

Read_Char:
 READ index, char ' get character from EEPROM
 IF (char = 0) THEN Msg_Done ' if 0, message is complete
 GOSUB LCD_Write ' write the character
 index = index + 1 ' point to next character
 GOTO Read_Char ' go get it

Msg_Done: ' the message is complete
 PAUSE 2000 ' wait 2 seconds
 char = CrsrHm ' move the cursor home
 GOSUB LCD_Command
 char = %00001110 ' turn the cursor on

Experiment #11: A Basic LCD Demonstration

Page 78 • StampWorks Manual Version 1.2

 GOSUB LCD_Command
 PAUSE 500

 char = CrsrRt
 FOR index = 1 TO 15 ' move the cursor accross display
 GOSUB LCD_Command
 PAUSE 150
 NEXT

 FOR index = 14 TO 0 ' go backward by moving cursor
 char = DDRam + index ' to a specific address
 GOSUB LCD_Command
 PAUSE 150
 NEXT

 char = %00001101 ' cursor off, blink on
 GOSUB LCD_Command
 PAUSE 2000

 char = %00001100 ' blink off
 GOSUB LCD_Command

 FOR index = 1 TO 10 ' flash display
 char = char ^ %00000100 ' toggle display bit
 GOSUB LCD_Command
 PAUSE 250
 NEXT
 PAUSE 1000

 FOR index = 1 TO 16 ' shift display
 char = DispRt
 GOSUB LCD_Command
 PAUSE 100
 NEXT
 PAUSE 1000

 FOR index = 1 TO 16 ' shift display back
 char = DispLf
 GOSUB LCD_Command
 PAUSE 100
 NEXT
 PAUSE 1000
 GOTO Main ' do it all over

 END

Experiment #11: A Basic LCD Demonstration

StampWorks Manual Version 1.2 • Page 79

' --
' Subroutines
' --

LCD_Command:
 LOW RS ' enter command mode

LCD_Write:
 LCDbus = char.HighNib ' output high nibble
 PULSOUT E, 1 ' strobe the Enable line
 LCDbus = char.LowNib ' output low nibble
 PULSOUT E, 1
 HIGH RS ' return to character mode
 RETURN

Behind The Scenes

This is a very simple program, which demonstrates the basic functions of a character LCD. The LCD is
initialized using four-bit mode in accordance with the Hitachi HD44780 controller specifications. This
mode is used to minimize the number of BASIC Stamp I/O lines needed to control the LCD. While it is
possible to connect to and control the LCD with eight data lines, this will not cause a noticeable
improvement in program performance and will use four more I/O lines.

Experiment #11: A Basic LCD Demonstration

Page 80 • StampWorks Manual Version 1.2

The basics of the initialization are appropriate for most applications:

• The display is on
• The cursor is off
• Display blinking is disabled
• The cursor is automatically incremented after each write
• The display does not shift

With the use of four data bits, two write cycles are necessary to send a byte to the LCD. The BASIC
Stamps’ HighNib and LowNib variable modifiers make this process exceedingly easy. Each nibble is
latched into the LCD by blipping the E (enable) line with PULSOUT.

The demo starts by clearing the LCD and displaying a message that has been stored in a DATA
statement. This technique of storing messages in EEPROM is very useful and makes programs easier
to update. In this program, characters are written until a zero is encountered. This method lets us
change the length of the string without worry about FOR-NEXT control settings. With the message
displayed, the cursor position is returned home (first position of first line) and turned on (an
underline cursor appears).

The cursor is sent back and forth across the LCD using two techniques. The first uses the cursor-right
command. Moving the cursor back is accomplished by manually positioning the cursor. Manual cursor
positioning is required by many LCD programs for tidy formatting of the information in the display.

With the cursor back home, it is turned off and the blink attribute is enabled. Blink causes the
current cursor position to alternate between the character and a solid black box. This can be useful
as an attention getter. Another attention-getting technique is to flash the entire display. This is
accomplished by toggling the display enable bit. The Exclusive OR operator (^) simplifies bit toggling,
as any bit XOR’d with a “1” will invert (1 XOR 1 = 0, 0 XOR 1 = 1).

Using the display shift commands, the entire display is shifted off-screen to the right, then back.
What this demonstrates is that the display is actually a window into the LCD’s memory. One method
of using the additional memory is to write messages off-screen and shift to them.

Experiment #12: Creating Custom LCD Characters

StampWorks Manual Version 1.2 • Page 81

Experiment #12:
Creating Custom LCD Characters

This program demonstrates the creation of custom LCD characters, animation with the custom
characters and initializing the LCD for multi-line mode.

Building The Circuit

Use the same circuit as in Experiment #11.

' ==
'
' File...... Ex12 - LCD Characters.BS2
' Purpose... Custom LCD Characters
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' This program demonstrates custom character creation and animation on a
' character LCD.
'
' The connections for this program conform to the BS2p LCDIN and LCDOUT
' commands. Use this program for the BS2, BS2e or BS2sx. There is a separate
' program for the BS2p.

' --
' I/O Definitions
' --

E CON 0 ' LCD Enable pin (1 = enabled)
RS CON 3 ' Register Select (1 = char)
LCDbus VAR OutB ' 4-bit LCD data bus

Experiment #12: Creating Custom LCD Characters

Page 82 • StampWorks Manual Version 1.2

' --
' Constants
' --

ClrLCD CON $01 ' clear the LCD
CrsrHm CON $02 ' move cursor to home position
CrsrLf CON $10 ' move cursor left
CrsrRt CON $14 ' move cursor right
DispLf CON $18 ' shift displayed chars left
DispRt CON $1C ' shift displayed chars right
DDRam CON $80 ' Display Data RAM control
CGRam CON $40 ' Custom character RAM
Line1 CON $80 ' DDRAM address of line 1
Line2 CON $C0 ' DDRAM address of line 2

' --
' Variables
' --

char VAR Byte ' character sent to LCD
newChar VAR Byte ' new character for animation
index1 VAR Byte ' loop counter
index2 VAR Byte ' loop counter

' --
' EEPROM Data
' --

Msg1 DATA "THE BASIC STAMP " ' preload EEPROM with messages
Msg2 DATA " IS VERY COOL! ", 3

CC0 DATA $0E, $1F, $1C, $18, $1C, $1F, $0E, $00 ' character 0
CC1 DATA $0E, $1F, $1F, $18, $1F, $1F, $0E, $00 ' character 1
CC2 DATA $0E, $1F, $1F, $1F, $1F, $1F, $0E, $00 ' character 2
Smiley DATA $00, $0A, $0A, $00, $11, $0E, $06, $00 ' smiley face

' --
' Initialization
' --

Initialize:
 DirL = %11111101 ' setup pins for LCD

Experiment #12: Creating Custom LCD Characters

StampWorks Manual Version 1.2 • Page 83

LCD_Init:
 PAUSE 500 ' let the LCD settle
 LCDbus = %0011 ' 8-bit mode
 PULSOUT E, 1
 PAUSE 5
 PULSOUT E, 1
 PULSOUT E, 1
 LCDbus = %0010 ' 4-bit mode
 PULSOUT E, 1
 char = %00101000 ' multi-line mode
 GOSUB LCD_Command
 char = %00001100 ' disp on, crsr off, blink off
 GOSUB LCD_Command
 char = %00000110 ' inc crsr, no disp shift
 GOSUB LCD_Command

Download_Chars: ' download custom chars to LCD
 char = CGRam ' point to CG RAM
 GOSUB LCD_Command ' prepare to write CG data
 FOR index1 = CC0 TO (Smiley + 7) ' build 4 custom chars
 READ index1, char ' get byte from EEPROM
 GOSUB LCD_Write ' put into LCD CG RAM
 NEXT

' --
' Program Code
' --

Main:
 char = ClrLCD ' clear the LCD
 GOSUB LCD_Command
 PAUSE 250

 FOR index1 = 0 TO 15 ' get message from EEPROM
 READ (Msg1 + index1),char ' read a character
 GOSUB LCD_Write ' write it
 NEXT

 PAUSE 2000 ' wait 2 seconds

Animation:
 FOR index1 = 0 TO 15 ' cover 16 characters
 READ (Msg2 + index1), newChar ' get new char from 2nd message
 FOR index2 = 0 TO 4 ' 5 characters in animation cycle
 char = Line2 + index1 ' set new DDRAM address

Experiment #12: Creating Custom LCD Characters

Page 84 • StampWorks Manual Version 1.2

 GOSUB LCD_Command
 LOOKUP index2, [0, 1, 2, 1, newChar], char
 GOSUB LCD_Write ' write animation character
 PAUSE 50 ' delay between animation chars
 NEXT
 NEXT
 PAUSE 1000
 GOTO Main
 ' do it all over
 END

' --
' Subroutines
' --

LCD_Command:
 LOW RS ' enter command mode

LCD_Write:
 LCDbus = char.HighNib ' output high nibble
 PULSOUT E, 1 ' strobe the Enable line
 LCDbus = char.LowNib ' output low nibble
 PULSOUT E, 1
 HIGH RS ' return to character mode
 RETURN

Experiment #12: Creating Custom LCD Characters

StampWorks Manual Version 1.2 • Page 85

Behind The Scenes

In this program, the LCD is initialized for multi-line mode. This will allow both lines of the
StampWorks LCD module to display information. With the display initialized, custom character data is
downloaded to the LCD.

The LCD has room for eight, user-definable customer characters. The data is stored for these
characters in an area called CGRAM and must be downloaded to the LCD after power-up and
initialization (custom character definitions are lost when power is removed from the LCD). Each
custom character requires eight bytes of data. The eighth byte is usually $00, since this is where the
cursor is positioned when under the character.

The standard LCD font is five bits wide by seven bits tall. You can create custom characters that are
eight bits tall, but the eighth line is generally reserved for the underline cursor. Here’s an example of
a custom character definition:

The shape of the character is determined by the ones and zeros in the data bytes. One in a given bit
position will light a pixel; zero will extinguish it.

The bit patterns for custom characters are stored in the BASIC Stamp’s EEPROM with DATA
statements. To move the patterns into the LCD, the CGRam command is executed and the characters
are written to the display. Before the characters can be used, the display must be returned to
“normal” mode. The usual method is to clear the display or home the cursor.

Interestingly, the LCD retrieves the bit patterns from memory while refreshing the display. In
advanced applications, the CGRam memory can be updated while the program is running to create
unusual display effects.

Experiment #12: Creating Custom LCD Characters

Page 86 • StampWorks Manual Version 1.2

The heart of this program is the animation loop. This code grabs a character from the second
message, then, for each character in that message, displays the animation sequence at the desired
character location on the second line of the LCD. A LOOKUP table is used to cycle the custom
characters for the animation sequence. At the end of the sequence, the new character is revealed.

Challenge

Create your own custom character sequence. Update the initialization and animation code to
accommodate your custom characters.

Experiment #13: Reading the LCD RAM

StampWorks Manual Version 1.2 • Page 87

Experiment #13:
Reading the LCD RAM

This program demonstrates the use of the LCD’s CGRAM space as external memory.

New PBASIC elements/commands to know:

• InA, InB, InC, InD

Building The Circuit

' ==
'
' File...... Ex13 - LCD Read.BS2
' Purpose... Read data from LCD
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

Experiment #13: Reading the LCD RAM

Page 88 • StampWorks Manual Version 1.2

' --
' Program Description
' --

' This program demonstrates how to read data from the LCD's display or CGRAM
' areas.
'
' The connections for this program conform to the BS2p LCDIN and LCDOUT
' commands. Use this program for the BS2, BS2e or BS2sx. There is a separate
' program for the BS2p.

' --
' I/O Definitions
' --

E CON 0 ' LCD Enable pin (1 = enabled)
RW CON 2 ' LCD Read/Write pin (1 = write)
RS CON 3 ' Register Select (1 = char)
LCDdirs VAR DirB
LCDbusOut VAR OutB ' 4-bit LCD data bus
LCDbusIn VAR InB

' --
' Constants
' --

ClrLCD CON $01 ' clear the LCD
CrsrHm CON $02 ' move cursor to home position
CrsrLf CON $10 ' move cursor left
CrsrRt CON $14 ' move cursor right
DispLf CON $18 ' shift displayed chars left
DispRt CON $1C ' shift displayed chars right
DDRam CON $80 ' Display Data RAM control
CGRam CON $40 ' Custom character RAM

' --
' Variables
' --

char VAR Byte ' character sent to LCD
index VAR Byte ' loop counter
rVar VAR Word ' for random number
addr VAR Byte ' address to write/read
tOut VAR Byte ' test value to write to LCD

Experiment #13: Reading the LCD RAM

StampWorks Manual Version 1.2 • Page 89

tIn VAR Byte ' test value to read from LCD
temp VAR Word ' temp value for numeric display
width VAR Nib ' width of number to display

' --
' Initialization
' --

Initialize:
 DirL = %11111101 ' setup pins for LCD

LCD_Init:
 PAUSE 500 ' let the LCD settle
 LCDbusOut = %0011 ' 8-bit mode
 PULSOUT E, 1
 PAUSE 5
 PULSOUT E, 1
 PULSOUT E, 1
 LCDbusOut = %0010 ' 4-bit mode
 PULSOUT E, 1
 char = %00001100 ' disp on, crsr off, blink off
 GOSUB LCD_Command
 char = %00000110 ' inc crsr, no disp shift
 GOSUB LCD_Command

' --
' Program Code
' --

Main:
 char = ClrLCD ' clear the LCD
 GOSUB LCD_Command

 FOR index = 0 TO 14 ' create display
 LOOKUP index, ["ADDR=?? ???/???"], char
 GOSUB LCD_Write
 NEXT

Loop:
 RANDOM rVar ' generate random number
 addr = rVar.LowByte & $3F ' create address (0 to 63)
 tOut = rVar.HighByte ' create test value (0 to 255)

 char = CGRam + addr ' set CGRAM pointer
 GOSUB LCD_Command

Experiment #13: Reading the LCD RAM

Page 90 • StampWorks Manual Version 1.2

 char = tOut
 GOSUB LCD_Write ' move the value to CGRAM
 PAUSE 100 ' wait a bit, then go get it

 char = CGRam + addr ' set CGRAM pointer
 GOSUB LCD_Command
 GOSUB LCD_Read ' read value from LCD
 tIn = char

 ' display results

 char = DDRam + 5 ' show address at position 5
 GOSUB LCD_Command
 temp = addr
 width = 2
 GOSUB Put_Val

 char = DDRam + 9 ' show output at position 8
 GOSUB LCD_Command
 temp = tOut
 width = 3
 GOSUB Put_Val

 char = DDRam + 13 ' show input at position 12
 GOSUB LCD_Command
 temp = tIn
 width = 3
 GOSUB Put_Val
 PAUSE 1000
 GOTO Loop ' do it again

 END

' --
' Subroutines
' --

Put_Val:
 FOR index = (width - 1) TO 0 ' display digits left to right
 char = (temp DIG index) + 48 ' convert digit to ASCII
 GOSUB LCD_Write ' put digit in display
 NEXT
 RETURN

Experiment #13: Reading the LCD RAM

StampWorks Manual Version 1.2 • Page 91

LCD_Command:
 LOW RS ' enter command mode

LCD_Write:
 LCDbusOut = char.HighNib ' output high nibble
 PULSOUT E, 1 ' strobe the Enable line
 LCDbusOut = char.LowNib ' output low nibble
 PULSOUT E, 1
 HIGH RS ' return to character mode
 RETURN

LCD_Read:
 HIGH RS ' data command
 HIGH RW ' read
 LCDdirs = %0000 ' make data lines inputs
 HIGH E
 char.HighNib = LCDbusIn ' get high nibble
 LOW E
 HIGH E
 char.LowNib = LCDbusIn ' get low nibble
 LOW E
 LCDdirs = %1111 ' return data lines to outputs
 LOW RW
 RETURN

Experiment #13: Reading the LCD RAM

Page 92 • StampWorks Manual Version 1.2

Behind The Scenes

This program demonstrates the versatility of the BASIC Stamp’s I/O lines and their ability to be
reconfigured mid-program. Writing to the LCD was covered in the last two experiments. To read data
back, the BASIC Stamp’s I/O lines must be reconfigured as inputs. This is no problem for the BASIC
Stamp. Aside from the I/O reconfiguration, reading from the LCD requires an additional control line:
RW. In most programs this line can be tied low to allow writing to the LCD. For reading from the
LCD the RW line is made high.

The program generates an address and data using the RANDOM function. The address is kept in the
range of 0 to 63 by masking out the highest bits of the LowByte returned by the RANDOM function.
The HighByte is used as the data to be written to and read back from the LCD.

The data is stored in the LCD’s CGRAM area. This means -- in this program -- that the CGRAM
memory cannot be used for custom characters. In programs that require less than eight custom
characters the remaining bytes of CGRAM can be used as off-board memory.

Reading data from the LCD is identical to writing: the address is set and the data is retrieved. For this
to take place, the LCD data lines must be reconfigured as inputs. Blipping the E (enable) line makes
the data (one nibble at a time) available for the BASIC Stamp. Once again, HighNib and LowNib are
used, this time to build a single byte from the two nibbles returned during the read operation.

When the retrieved data is ready, the address, output data and input data are written to the LCD for
examination. As short subroutine, Put_Val, handles writing numerical values to the LCD. To use this
routine, move the cursor to the desired location, put the value to be displayed in temp, the number
of characters to display in width, then call Put_Val. The subroutine uses the DIG operator to
extract a digit from temp and adds 48 to convert it to ASCII so that it can be displayed on the LCD.

Moving Forward

StampWorks Manual Version 1.2 • Page 93

Experiment #14:
Magic 8-Ball Game

This program demonstrates the 8x10 font capability of StampWorks LCD module. The 8x10 font
allows descended letters (g, j, p, q and y) to be displayed properly.

New PBASIC elements/commands to know:

• LOOKDOWN

Building The Circuit

Add this pushbutton to the circuit in Experiment #11 (remember to reconnect LCD.RW to Vss).

' ==
'
' File...... Ex14 - LCD Magic 8-Ball.BS2
' Purpose... Magic 8-Ball simulation
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

Experiment #14: Magic 8-Ball Game

Page 94 • StampWorks Manual Version 1.2

' --
' Program Description
' --

' This program simulates a Magic 8-Ball. Ask a question, then press the
' button to get your answer.
'
' The program also demonstrates using a 2-Line display as a single-line display
' with the 5x10 font set. When using the 5x10 font, true descended characters
' are available but must be remapped from the LCD ROM.
'
' The connections for this program conform to the BS2p LCDIN and LCDOUT
' commands. Use this program for the BS2, BS2e or BS2sx. There is a separate
' program for the BS2p.

' --
' I/O Definitions
' --

E CON 0 ' LCD Enable pin (1 = enabled)
RS CON 3 ' Register Select (1 = char)
LCDbus VAR OutB ' 4-bit LCD data out
AskButton CON 15 ' Ask button input pin

' --
' Constants
' --

ClrLCD CON $01 ' clear the LCD
CrsrHm CON $02 ' move cursor to home position
CrsrLf CON $10 ' move cursor left
CrsrRt CON $14 ' move cursor right
DispLf CON $18 ' shift displayed chars left
DispRt CON $1C ' shift displayed chars right
DDRam CON $80 ' Display Data RAM control
CGRam CON $40 ' Custom character RAM control

NumAnswers CON 6 ' 6 possible answers

_g CON $E7 ' DDROM addresses of descenders
_j CON $EA
_p CON $F0
_q CON $F1
_y CON $F9

Moving Forward

StampWorks Manual Version 1.2 • Page 95

' --
' Variables
' --

char VAR Byte ' character sent to LCD
addr VAR Byte ' message address
swData VAR Byte ' workspace for BUTTON
answer VAR Nib ' answer pointer
clock VAR Nib ' animation clock
pntr VAR Nib ' pointer to animation character

' --
' EEPROM Data
' --

Prompt DATA "Ask a question", 0

Ans0 DATA "Definitely YES", 0
Ans1 DATA "Possible...", 0
Ans2 DATA "Definitely NO", 0
Ans3 DATA "Not likely...", 0
Ans4 DATA "Answer uncertain", 0
Ans5 DATA "Please ask again", 0

' --
' Initialization
' --

Initialize:
 DirL = %11111101 ' setup pins for LCD

LCD_Init:
 PAUSE 500 ' let the LCD settle
 LCDbus = %0011 ' 8-bit mode
 PULSOUT E, 1
 PAUSE 5
 PULSOUT E, 1
 PULSOUT E, 1
 LCDbus = %0010 ' 4-bit mode
 PULSOUT E, 1
 char = %00100100 ' select 5x10 font
 GOSUB LCD_Command
 char = %00001100 ' disp on, crsr off, blink off
 GOSUB LCD_Command

Experiment #14: Magic 8-Ball Game

Page 96 • StampWorks Manual Version 1.2

 char = %00000110 ' inc crsr, no disp shift
 GOSUB LCD_Command

' --
' Program Code
' --

Main:
 char = ClrLCD ' clear the LCD
 GOSUB LCD_Command
 addr = Prompt
 GOSUB Show_Message ' print prompt

Rollem:
 GOSUB Shuffle ' shuffle until button pressed
 PAUSE 5
 BUTTON AskButton, 0, 255, 10, swData, 1, Show_Answer
 GOTO Rollem

Show_Answer:
 ' get address of answer message
 LOOKUP answer, [Ans0, Ans1, Ans2, Ans3, Ans4, Ans5], addr

 char = ClrLCD
 GOSUB LCD_Command
 GOSUB Show_Message
 PAUSE 2000 ' give time to read answer
 GOTO Main ' do it all over

 END

' --
' Subroutines
' --

LCD_Command:
 LOW RS ' enter command mode

LCD_Write:
 LCDbus = char.HighNib ' output high nibble
 PULSOUT E,1 ' strobe the Enable line
 LCDbus = char.LowNib ' output low nibble
 PULSOUT E,1
 HIGH RS ' return to character mode
 RETURN

Moving Forward

StampWorks Manual Version 1.2 • Page 97

Show_Message:
 READ addr,char ' read a character from EEPROM
 IF (char = 0) THEN Msg_Done ' if 0, message is complete
 GOSUB Translate ' fix letters with descenders
 GOSUB LCD_Write ' write the character
 addr = addr + 1 ' point to next character
 GOTO Show_Message

Msg_Done:
 RETURN

' convert to descender font
' - does not change other characters

Translate:
 LOOKDOWN char, ["g", "j", "q", "p", "y"], char
 LOOKUP char, [_g, _j, _q, _p, _y], char
 RETURN

Shuffle:
 answer = (answer + 1) // NumAnswers ' update answer pointer
 clock = (clock + 1) // 15 ' update pointer clock
 IF (clock > 0) THEN Shuffle_Done ' time to update animation?
 char = DDRam + 15 ' yes, write at pos 15
 GOSUB LCD_Command
 LOOKUP pntr, ["-+|*"], char ' load animation character
 GOSUB LCD_Write ' write it
 pntr = (pntr + 1) // 4 ' update animation char

Shuffle_Done:
 RETURN

Behind The Scenes

The standard 5x7 LCD font suffers aesthetically when it comes to descended letters, those letters
with tails (g, j, p, q and y). The nature of the font map causes these letters to be “squashed” into the
display. Many LCDs support a 5x10 character font and provide additional mapping for properly
descended characters.

Using the 5x10 font is straightforward; it requires a single additional command in the initialization
sequence. To display properly descended characters, however, is a bit trickier since these characters

Experiment #14: Magic 8-Ball Game

Page 98 • StampWorks Manual Version 1.2

are not mapped at equal offsets to their ASCII counterparts. Thankfully, the BASIC Stamp has a
couple of table-oriented commands that simplify the translation process.

After initialization, the screen is cleared and the user is prompted to think of a question. The
Show_Message subroutine displays a message at the current cursor position. The message is stored
in a DATA statement and passed to the subroutine by its EEPROM address. Show_Message reads
characters from the EEPROM until it finds a zero, passing each character to the subroutine,
Translate, which re-maps the ASCII value for descended letters. Translate uses a clever trick
with LOOKUP and LOOKDOWN.

When a character is passed to Translate, it is compared to the list of known descended letters. If
the character is in this list, it is converted to a value that will be used by the LOOKUP table to re-map
the character to the descended version in the LCD font map. If the character is not in the descended
list, it will pass through Translate unaffected.

The main loop of the program waits for you to press the button, creating a randomized answer by
continuously calling the Shuffle subroutine. Shuffle updates the answer variable and creates an
animated bug. The animation is created with standard characters and updated every 15 cycles
through the Shuffle subroutine. When the button is finally pressed, the EEPROM address of the
corresponding answer is loaded with LOOKUP and the “magic” answer is displayed.

Challenge

Create custom characters that use the 5x10 font mode. Note: 16 bytes must be used for each
character, even though only ten will be displayed.

Moving Forward

StampWorks Manual Version 1.2 • Page 99

Moving Forward

The first three sections of this manual dealt specifically with output devices, because the choice of
output to the user is often critical to the success of a project. By now, you should be very
comfortable with LEDs, seven-segment displays and LCDs. From this point forward we will present a
variety of experiments -- some simple, others complex which will round your education as a BASIC
Stamp programmer and give you the confidence you need to develop your own BASIC Stamp-
controlled applications.

Remember, the key to success here is to complete each experiment and to take on each challenge.
Then, go further by challenging yourself. Each time you modify a program you will learn something.
It’s okay if your experiments don’t work as expected, because you will still be learning.

Experiment #15: Debouncing Multiple Inputs

StampWorks Manual Version 1.2 • Page 101

Experiment #15:
Debouncing Multiple Inputs

The experiment will teach you how to debounce multiple BASIC Stamp inputs. With modification, any
number of inputs from two to 16 can be debounced with this code.

New PBASIC elements/commands to know:

• ~ (1’s compliment operator)
• CLS (DEBUG modifier)
• IBIN, IBIN1 – IBIN16 (DEBUG modifier)

Building The Circuit

' ==
'
' File...... Ex15 - Debounce.BS2
' Purpose... Multi-input button debouncing
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com

Experiment #15: Debouncing Multiple Inputs

Page 102 • StampWorks Manual Version 1.2

' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' This program demonstrates the simultaneous debouncing of multiple inputs. The
' input subroutine is easily adjusted to handle any number of inputs.

' --
' I/O Definitions
' --

SwInputs VAR InA ' four inputs, pins 0 - 3

' --
' Variables
' --

switches VAR Nib ' debounced inputs
x VAR Nib ' loop counter

' --
' Program Code
' --

Main:
 GOSUB Get_Switches ' get debounced inputs
 DEBUG Home, "Inputs = ", IBIN4 switches ' display in binary mode
 PAUSE 50 ' a little time between readings
 GOTO Main ' do it again

 END

' --
' Subroutines
' --

Experiment #15: Debouncing Multiple Inputs

StampWorks Manual Version 1.2 • Page 103

Get_Switches:
 switches = %1111 ' enable all four inputs
 FOR x = 1 TO 10
 switches = switches & ~SwInputs ' test inputs
 PAUSE 5 ' delay between tests
 NEXT
 RETURN

Behind The Scenes

When debouncing only one input, the BASIC Stamp’s BUTTON function works perfectly and even
adds a couple of useful features (like auto-repeat). To debounce two or more inputs, we need to
create a bit of code. The workhorse of this experiment is the subroutine Get_Switches. As
presented, it will accommodate four switch inputs. It can be modified for any number of inputs from
two to 16.

The purpose of Get_Switches is to make sure that the inputs stay on solid for 50 milliseconds with
no contact bouncing. Debounced inputs will be retuned in the variable, switches, with a valid input
represented by a 1 in the switch position.

The Get_Switches routine starts by assuming that all switch inputs will be valid, so all the bits of
switches are set to one. Then, using a FOR-NEXT loop, the inputs are scanned and compared to the
previous state. Since the inputs are active low (zero when pressed), the one’s compliment operator
(~) inverts them. The And operator (&) is used to update the current state. For a switch to be valid,
it must remain pressed through the entire FOR-NEXT loop.

Here’s how the debouncing technique works: When a switch is pressed, the input to the BASIC
Stamp will be zero. The one’s compliment operator will invert zero to one. One “Anded” with one is
still one, so that switch remains valid. If the switch is not pressed, the input to the BASIC Stamp will
be one (because of the 10K pull-up to Vdd). One is inverted to zero. Zero “Anded” with any number
is zero and will cause the switch to remain invalid through the entire debounce cycle.

The debounce switch inputs are displayed in a DEBUG window with the IBIN4 modifier so that the
value of each switch input is clearly displayed.

Challenge

Modify the program to debounce and display eight switches.

Experiment #16: Counting Events

StampWorks Manual Version 1.2 • Page 105

Experiment #16:
Counting Events

This experiment demonstrates an events-based program delay.

Building The Circuit

' ==
'
' File...... Ex16 - Counter.BS2
' Purpose... Counts external events
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' Counts extenal events by wait for a low-to-high transition on the event
' input pin.

' --
' Revision History
' --

' --
' I/O Definitions
' --

EventIn VAR In15 ' event input pin

Experiment #16: Counting Events

Page 106 • StampWorks Manual Version 1.2

' --
' Constants
' --

IsLow CON 0
IsHigh CON 1
Target CON 1000 ' target count

' --
' Variables
' --

eCount VAR Word ' event count

' --
' Initialization
' --

Init:
 PAUSE 250 ' let DEBUG window open
 DEBUG CLS, "Started... ", CR
 eCount = 0 ' clear counter

' --
' Program Code
' --

Main:
 GOSUB Wait_For_Count ' wait for 1000 pulses
 DEBUG "Count complete."

 END

' --
' Subroutines
' --

Wait_For_Count:
 IF (EventIn = IsLow) THEN Wait_For_Count ' wait for input to go high
 eCount = eCount + 1 ' increment event count
 DEBUG Home, 10, "Count = ", DEC eCount, CR

Experiment #16: Counting Events

StampWorks Manual Version 1.2 • Page 107

 IF (eCount = Target) THEN Wait_Done ' check against target

Wait_Low:
 IF (EventIn = IsHigh) THEN Wait_Low ' wait for input to go low
 GOTO Wait_For_Count

Wait_Done:
 RETURN

Behind The Scenes

The purpose of the Wait_For_Count subroutine is to cause the program to wait for a specified
number of events. In an industrial setting, for example, a packaging system we might need to run a
conveyor belt until 100 boxes pass.

When the program is passed to Wait_For_Count, the input pin is monitored for a low-to-high
transition. When the line goes high, the counter is incremented and the program waits for the line to
go low. When this happens, the code loops back for the next high input. When the target count is
reached, the subroutine returns to the main program. The time spent in the subroutine is determined
by the rate of incoming events.

Note that the subroutine expects a clean input. A noisy input could cause spurious counts, leading to
early termination of the subroutine. One method of dealing with a noisy input – when the time
between expected events is known – is to add a PAUSE statement after the start of an event. The
idea is to PAUSE when the event starts and end the PAUSE after the event with a bit of lead-time
before the next event is expected. The code that follows works when the events are about a half-
second in length and the time between events is two seconds:

Wait_For_Count:
 IF (P_in = IsLow) THEN Wait_For_Count ' wait for high pulse
 pCount = pCount + 1 ' increment count
 DEBUG Home, 10, "Count = ", DEC eCount, CR
 IF (pCount = Target) THEN Wait_Done ' check against target
 PAUSE 1500 ' clean-up noisy input

Wait_Low:
 IF (P_in = IsHigh) THEN Wait_Low ' wait for pulse to go low
 GOTO Wait_For_Count

Wait_Done:
 RETURN

Experiment #17: Frequency Measurement

StampWorks Manual Version 1.2 • Page 109

Experiment #17:
Frequency Measurement

This experiment determines the frequency of an incoming pulse stream by using the BASIC Stamp’s
COUNT function.

New PBASIC elements/commands to know:

• COUNT

Building The Circuit (Note that schematic is NOT chip-centric)

' ==
'
' File...... Ex17 - FreqIn1.BS2
' Purpose... Frequency input
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

Experiment #17: Frequency Measurement

Page 110 • StampWorks Manual Version 1.2

' --
' Program Description
' --

' This program monitors and displays the frequency of a signal on Pin 0.

' --
' I/O Definitions
' --

FreqPin CON 0 ' frequency input pin

' --
' Constants
' --

OneSec CON 1000 ' one second - BS2
' OneSec CON 2500 ' BS2sx
' OneSec CON 3484 ' BS2p

' --
' Variables
' --

freq VAR Word ' frequency

' --
' Program Code
' --

Main:
 COUNT FreqPin, OneSec, freq ' collect pulses for 1 second
 DEBUG CLS, "Frequency: ", DEC freq, " Hz" ' display on DEBUG screen
 GOTO Main ' do it again

 END

Experiment #17: Frequency Measurement

StampWorks Manual Version 1.2 • Page 111

Behind The Scenes

In the previous experiment, several lines of code were used to count pulses on an input pin. That
method works when counting to a specific number. Other programs will want to count the number of
pulses that arrive during a specified time period. The BASIC Stamp’s COUNT function is designed for
this purpose.

The frequency of an oscillating signal is defined as the number of cycles per second and is expressed
in Hertz. The BASIC Stamp’s COUNT function monitors the specified pin for a given amount of time.
To create a frequency meter, the specified time window is set to 1000 milliseconds (one second).

Challenge

Improve the responsiveness (make it update more frequently) of this program by changing the
COUNT period. What other adjustment has to be made? How does this change affect the ability to
measure very low frequency signals?

Experiment #18: Advanced Frequency Measurement

StampWorks Manual Version 1.2 • Page 113

Experiment #18:
Advanced Frequency Measurement

This experiment uses PULSIN to create a responsive frequency meter.

New PBASIC elements/commands to know:

• PULSIN

Building The Circuit

Use the same circuit as in Experiment #18.

' ==
'
' File...... Ex18 - FreqIn2.BS2
' Purpose... Frequency Input
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2p}
'
' ==

' --
' Program Description
' --

' This program monitors and displays the frequency of a signal on Pin 0.

' --
' I/O Definitions
' --

FreqPin CON 0 ' frequency input pin

' --
' Constants

Experiment #18: Advanced Frequency Measurement

Page 114 • StampWorks Manual Version 1.2

' --

Convert CON $0200 ' input to uSeconds (BS2)
' Convert CON $00CC ' BS2sx
' Convert CON $00C0 ' BS2p

' --
' Variables
' --

pHigh VAR Word ' high pulse width
pLow VAR Word ' low pulse width
period VAR Word ' cycle time (high + low)
freq VAR Word ' frequency

' --
' Program Code
' --

Main:
 PULSIN FreqPin, 0, pHigh ' get high portion of input
 PULSIN FreqPin, 1, pLow ' get low portion of input
 period = (pHigh + pLow) */ Convert ' calculate cycle width in uSecs
 freq = 50000 / period * 20 ' calculate frequency

 ' display on DEBUG screen

 DEBUG Home
 DEBUG "Period...... ", DEC period, " uS ", CR
 DEBUG "Frequency... ", DEC freq, " Hz "
 GOTO Main ' do it again

 END

Behind The Scenes

In the last experiment, you learned that the frequency of a signal is defined as the number of cycles
per second. You created a simple frequency meter by counting the number of pulses (cycles) in one
second. This method works well, especially for low-frequency signals. There will be times, however,
when project requirements will dictate a quicker response time for frequency measurement.

Experiment #18: Advanced Frequency Measurement

StampWorks Manual Version 1.2 • Page 115

The frequency of a signal can be calculated from its period, or the time for one complete cycle.

By measuring the period of an incoming signal, its frequency can be calculated with the equation
(where the period is expressed in seconds):

frequency = 1 / period

The BASIC Stamp’s PULSIN function is designed to measure the width of an incoming pulse. By using
PULSIN to measure the high and low portions of an incoming signal, its period can be calculated and
the frequency can be determined. The result of PULSIN is expressed in units of two microseconds.
Thus, the formula for calculating frequency becomes:

frequency = 500,000 / period

This creates a problem for BASIC Stamp math though, as it can only deal with 16-bit numbers
(maximum value is 65,535). To fix the formula, we convert 500,000 to 50,000 x 10 and rewrite the
formula like this

frequency = 50,000 / period * 10

Run the program and adjust the 10K pot. Notice that the DEBUG screen is updated without delay and
that there is no “hunting” as when using COUNT to determine frequency.

Experiment #19: A Light-Controlled Theremin

StampWorks Manual Version 1.2 • Page 117

Experiment #19
A Light-Controlled Theremin

This experiment demonstrates FREQOUT by creating a light-controlled Theremin (the first electronic
musical instrument ever produced).

Building The Circuit

Note: Later versions of the StampWorks lab board come with a built-in audio amplifier. Attach an 8-
ohm speaker to the output of the amplifier to get the best sound from this project.

' ==
'
' File...... Ex19 - Theremin.BS2
' Purpose... Simple Digital Theremin
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

Experiment #19: A Light-Controlled Theremin

Page 118 • StampWorks Manual Version 1.2

' This program uses RCTIME with a photocell to create a light-controlled
' theremin.

' --
' I/O Definitions
' --

Speaker CON 0 ' piezo speaker output
PitchCtrl CON 1 ' pitch control (RCTIME) input

' --
' Constants
' --

Scale CON $0100 ' divider for BS2/BS2e
'Scale CON $0066 ' divider for BS2sx
'Scale CON $0073 ' divider for BS2p

Threshold CON 200 ' cutoff frequency to play

' --
' Variables
' --

tone VAR Word ' frequency output

' --
' Program Code
' --

Main:
 HIGH PitchCtrl ' discharge cap
 PAUSE 1 ' for 1 ms
 RCTIME PitchCtrl, 1, tone ' read the light sensor
 tone = tone */ Scale ' scale input

 IF (tone < Threshold) THEN Main ' skip for ambient light
 FREQOUT Speaker, 25, tone ' output the tone
 GOTO Main

 END

Experiment #19: A Light-Controlled Theremin

StampWorks Manual Version 1.2 • Page 119

Behind The Scenes

A Theremin is an interesting musical device used to create those weird, haunting sounds often heard
in old horror movies. This version uses the light falling onto a photocell to create the output tone.

Since the photocell is a resistive device, RCTIME can be used to read its value. FREQOUT is used to
play the note. The constant, Threshold, is used to control the cutoff point of the Theremin. When
the photocell reading falls below this value, no sound is played. This value should be adjusted to the
point where the Theremin stops playing when the photocell is not covered in ambient light.

Challenge

Add a second RC circuit using a 10K pot instead of a photocell. Use this circuit to adjust the threshold
value to varying light conditions.

Experiment #20: Sound Effects

StampWorks Manual Version 1.2 • Page 121

Experiment #20
Sound Effects

This experiment uses FREQOUT and DTMFOUT to create a telephone sound effects machine.

New PBASIC elements/commands to know:

• DTMFOUT

Building The Circuit

Note: Later versions of the StampWorks lab board come with a built-in audio amplifier. Attach an 8-
ohm speaker to the output of the amplifier to get the best sound from this project.

' ==
'
' File...... Ex20 - Sound FX.BS2
' Purpose... Stamp-generated sounds
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' This program demonstrates several realistic and interesting sound effects
' that can be generated by the BASIC Stamp using FREQOUT and DTMFOUT. This

Experiment #20: Sound Effects

Page 122 • StampWorks Manual Version 1.2

' program works best when played through an amplifier.

' --
' I/O Definitions
' --

Speaker CON 0 ' speaker on pin 0

' --
' Constants
' --

R CON 0 ' rest
C CON 33 ' ideal is 32.703
Cs CON 35 ' ideal is 34.648
D CON 39 ' ideal is 38.891
E CON 41 ' ideal is 41.203
F CON 44 ' ideal is 43.654
Fs CON 46 ' ideal is 46.249
G CON 49 ' ideal is 48.999
Gs CON 52 ' ideal is 51.913
A CON 55 ' ideal is 55.000
As CON 58 ' ideal is 58.270
B CON 62 ' ideal is 61.735

N1 CON 500 ' whole note duration
N2 CON N1/2 ' half note
N3 CON N1/3 ' third note
N4 CON N1/4 ' quarter note
N8 CON N1/8 ' eighth note

ScaleT CON $0100 ' time scale - BS2/BS2e
ScaleF CON $0100 ' frequency scale - BS2/BS2e

' ScaleT CON $0280 ' time scale - BS2sx
' ScaleF CON $0066 ' frequency scale - BS2sx

' ScaleT CON $03C6 ' time scale - BS2p
' ScaleF CON $0043 ' frequency scale - BS2p

' --
' Variables
' --

Experiment #20: Sound Effects

StampWorks Manual Version 1.2 • Page 123

x VAR Word ' loop counter
note1 VAR Word ' first tone for FREQOUT
note2 VAR Word ' second tone for FREQOUT
onTime VAR Word ' duration for FREQOUT
offTime VAR Word
oct1 VAR Nib ' octave for freq1 (1 - 8)
oct2 VAR Nib ' octave for freq2 (1 - 8)
eePtr VAR Byte ' EEPROM pointer
digit VAR Byte ' DTMF digit
clickDly VAR Word ' delay betweens "clicks"

' --
' EEPROM Data
' --
'
Phone1 DATA "972-555-1212", 0 ' a stored telephone number
Phone2 DATA "916-624-8333", 0 ' another number

' --
' Program Code
' --

Main:
 PAUSE 250
 DEBUG CLS, "BASIC Stamp Sound FX Demo", CR, CR

Dial_Tone:
 DEBUG "Dial tone", CR
 onTime = 35 */ ScaleT
 note1 = 35 */ ScaleF
 FREQOUT Speaker, onTime, note1 ' "click"
 PAUSE 100
 onTime = 2000 */ ScaleT
 note1 = 350 */ ScaleF
 note2 = 440 */ ScaleF
 FREQOUT Speaker, onTime, note1, note2 ' combine 350 Hz & 440 Hz

Dial_Phone1: ' dial phone from EE
 DEBUG "Dialing number: "
 eePtr = Phone1 ' initialize eePtr pointer
 GOSUB Dial_Phone

Phone_Busy:
 PAUSE 1000
 DEBUG CR, " - busy...", CR

Experiment #20: Sound Effects

Page 124 • StampWorks Manual Version 1.2

 onTime = 400 */ ScaleT
 note1 = 480 */ ScaleF
 note2 = 620 */ ScaleF
 FOR x = 1 TO 8
 FREQOUT Speaker, onTime, note1, note2 ' combine 480 Hz and 620 Hz
 PAUSE 620
 NEXT
 onTime = 35 */ ScaleT
 note1 = 35 */ ScaleF
 FREQOUT Speaker, onTime, note1 ' "click"

Dial_Phone2:
 DEBUG "Calling Parallax: "
 eePtr = Phone2
 GOSUB Dial_Phone

Phone_Rings:
 PAUSE 1000
 DEBUG CR, " - ringing"
 onTime = 2000 */ ScaleT
 note1 = 440 */ ScaleF
 note2 = 480 */ ScaleF
 FREQOUT Speaker, onTime, note1, note2 ' combine 440 Hz and 480 Hz
 PAUSE 4000
 FREQOUT Speaker, onTime, note1, note2 ' combine 440 Hz and 480 Hz
 PAUSE 2000

Camptown_Song:
 DEBUG CR, "Play a Camptown song", CR
 FOR x = 0 TO 13
 LOOKUP x, [G, G, E, G, A, G, E, R, E, D, R, E, D, R], note1
 LOOKUP x, [4, 4, 4, 4, 4, 4, 4, 1, 4, 4, 1, 4, 4, 1], oct1
 LOOKUP x, [N2, N2, N2, N2, N2, N2, N2, N2, N2, N1, N2, N2, N1, N8], onTime
 GOSUB Play_1_Note
 NEXT

Howler:
 DEBUG "Howler -- watch out!!!", CR
 FOR x = 1 TO 4
 onTime = 1000 */ ScaleT
 note1 = 1400 */ ScaleF
 note2 = 2060 */ ScaleF
 FREQOUT Speaker, onTime, note1, note2 ' combine 1400 Hz and 2060 Hz
 onTime = 1000 */ ScaleT
 note1 = 2450 */ ScaleF
 note2 = 2600 */ ScaleF
 FREQOUT Speaker, onTime, note1, note2 ' combine 2450 Hz and 2600 Hz

Experiment #20: Sound Effects

StampWorks Manual Version 1.2 • Page 125

 NEXT

Roulette_Wheel:
 DEBUG "Roulette Wheel", CR
 onTime = 5 */ ScaleT ' onTime for "click"
 note1 = 35 */ ScaleF ' frequency for "click"
 clickDly = 250 ' starting delay between clicks
 FOR x = 1 TO 8 ' spin up wheel
 FREQOUT Speaker, onTime, note1 ' click
 PAUSE clickDly
 clickDly = clickDly */ $00BF ' accelerate (speed * 0.75)
 NEXT
 FOR x = 1 TO 10 ' spin stable
 FREQOUT Speaker, onTime, note1
 PAUSE clickDly
 NEXT
 FOR x = 1 TO 20 ' slow down
 FREQOUT Speaker, onTime, note1
 PAUSE clickDly
 clickDly = clickDly */ $010C ' decelerate (speed * 1.05)
 NEXT
 FOR x = 1 TO 30 ' slow down and stop
 FREQOUT Speaker, onTime, note1
 PAUSE clickDly
 clickDly = clickDly */ $0119 ' decelerate (speed * 1.10)
 NEXT

Computer_Beeps: ' looks great with randmom LEDs
 DEBUG "50's Sci-Fi Computer", CR
 FOR x = 1 TO 50 ' run about 5 seconds
 onTime = 50 */ ScaleT
 RANDOM note1 ' create random note
 note1 = (note1 // 2500) */ ScaleF ' don't let note go to high
 FREQOUT Speaker, onTime, note1 ' play it
 PAUSE 100 ' short pause between notes
 NEXT

Space_Transporter:
 DEBUG "Space Transporter", CR
 onTime = 10 */ ScaleT
 FOR x = 5 TO 5000 STEP 5 ' frequency sweep up
 note1 = x */ ScaleF
 FREQOUT Speaker, onTime, note1, note1 */ 323
 NEXT
 FOR x = 5000 TO 5 STEP 50 ' frequency sweep down
 note1 = x */ ScaleF
 FREQOUT Speaker, onTime, note1, note1 */ 323

Experiment #20: Sound Effects

Page 126 • StampWorks Manual Version 1.2

 NEXT

 DEBUG CR, "Sound demo complete."
 INPUT Speaker

 END

' --
' Subroutines
' --

Dial_Phone:
 READ eePtr, digit ' read a digit
 IF (digit = 0) THEN Dial_Exit ' when 0, number is done
 DEBUG digit ' display digit
 IF (digit < "0") THEN Next_Digit ' don't dial non-digits
 onTime = 150 */ ScaleT
 offTime = 75 */ ScaleT
 DTMFOUT Speaker, onTime, offTime, [digit - 48]

Next_Digit:
 eePtr = eePtr + 1 ' update eePtr pointer
 GOTO Dial_Phone ' get another digit

Dial_Exit:
 RETURN

Play_1_Note:
 note1 = note1 << (oct1 - 1) ' get frequency for note + octave
 onTime = onTime */ ScaleT
 note1 = note1 */ ScaleF
 FREQOUT Speaker, onTime, note1 ' play it
 RETURN

Play_2_Notes:
 note1 = note1 << (oct1 - 1) ' get frequency for note + octave
 note2 = note2 << (oct2 - 1) ' get frequency for note + octave
 onTime = onTime */ ScaleT
 note1 = note1 */ ScaleF
 note2 = note2 */ ScaleF
 FREQOUT Speaker, onTime, note1, note2 ' play both
 RETURN

Experiment #20: Sound Effects

StampWorks Manual Version 1.2 • Page 127

Behind The Scenes

The a bit of programming creativity, the BASIC Stamp is able to create some very interesting sound
effects. Since most of the sounds we hear on the telephone (other than voice) are generated with
two tones, the BASIC Stamp’s FREQOUT and DTMFOUT functions can be used to generate telephone
sound effects.

DTMFOUT is actually a specialized version of FREQOUT. Its purpose is to play the dual-tones required
to dial a telephone. Instead of passing a tone (or tones), the digit(s) to be dialed are passed as
parameters. In actual dialing applications, the DTMF on-time and off-time can be specified to deal
with telephone line quality.

This program also presents the BASIC Stamp’s basic musical ability by playing a simple song.
Constants for note frequency (in the first octave) and note timing simplify the operational code. The
Play_1_Note subroutine adjusts note frequency for the specified octave. The musical quality can
suffer a bit in the higher octaves because of rounding errors. Using the ideal values shown, the
constants table can be expanded to create accurate musical notes. Keep in mind that each octave
doubles the frequency of a note.

Octave 2 = Octave 1 * 2
Octave 3 = Octave 2 * 2
Octave 4 = Octave 3 * 2

And so on…

Challenge

Convert (a portion of) your favorite song to play on the BASIC Stamp.

Experiment #21: Analog Input with PULSIN

StampWorks Manual Version 1.2 • Page 129

Experiment #21
Analog Input with PULSIN

The experiment reads a resistive component using PULSIN and a free-running oscillator.

Building The Circuit (Note that schematic is NOT chip-centric)

' ==
'
' File...... Ex21 - AnalogIn.BS2
' Purpose... Analog input using PULSIN
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' This program "reads" an analog value by using that component to control the

Experiment #21: Analog Input with PULSIN

Page 130 • StampWorks Manual Version 1.2

' output frequency of a 555-based oscillator. PULSIN is used to measure the
' high portion of the signal as it is controlled by the varialbe resistance.

' --
' I/O Definitions
' --

PulseInput CON 0

' --
' Constants
' --

P75 CON $00C0 ' 0.75
P50 CON $0080 ' 0.50
P25 CON $0040 ' 0.25

' --
' Variables
' --

rValue VAR Word ' raw value
sValue VAR Word ' smoothed value

' --
' Program Code
' --

Main:
 PULSIN PulseInput, 1, rValue ' get high portion of input
 sValue = (rValue */ P25) + (sValue */ P75)

 DEBUG Home
 DEBUG "Raw value... ", DEC rValue, " ", CR
 DEBUG "Filtered.... ", DEC sValue, " "

 GOTO Main ' do it again

Behind The Scenes

In this experiment, the 555 is configured as an oscillator. Analyzing the output, the width of the low
portion of the output is controlled by the resistance of the photocell. By measuring the low portion of

Experiment #21: Analog Input with PULSIN

StampWorks Manual Version 1.2 • Page 131

the 555’s output signal with PULSIN, the BASIC Stamp is able to determine the relative value of the
photocell.

Once the raw value is available, adding a portion of the raw value with a portion of the last filtered
value digitally filters it. The ratio of raw-to-filtered readings in this equation will determine the
responsiveness of the filter. The larger the raw portion, the faster the filter.

Challenge

Create a final output value that is scaled so that its range is between zero and 1000.

Experiment #22: Analog Output with PWM

StampWorks Manual Version 1.2 • Page 133

Experiment #22:
Analog Output with PWM

This program shows how create a variable voltage output with PWM.

New PBASIC elements/commands to know:

• PWM

Building The Circuit

Note that this circuit requires 12V. The only place you can get 12V on the StampWorks lab board is
from the +V screw terminal at the high-current driver location.

' ==
'
' File...... Ex22 - Throb.BS2
' Purpose... Output a variable voltage with PWM
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

Experiment #22: Analog Output with PWM

Page 134 • StampWorks Manual Version 1.2

' --
' Program Description
' --

' This program demonstrates how the PWM command can be used with an opamp
' buffer to create a variable voltage output.

' --
' I/O Definitions
' --

D2Aout CON 0 ' analog out pin

' --
' Constants
' --

OnTime CON 10 ' 10 milliseconds, BS2
'OnTime CON 25 ' BS2sx
'OnTime CON 15 ' BS2p

' --
' Variables
' --

level VAR Byte ' analog level

' --
' Program Code
' --

Main:
 FOR level = 0 TO 255 ' increase voltage to LED
 PWM D2Aout, level, OnTime
 NEXT

 PAUSE 250

 FOR level = 255 TO 0 ' decrease voltage to LED
 PWM D2Aout, level, OnTime
 NEXT

 GOTO Main ' do it again

Experiment #22: Analog Output with PWM

StampWorks Manual Version 1.2 • Page 135

Behind The Scenes

While most BASIC Stamp applications will deal with digital signals, some will require analog output; a
variable voltage between zero and some maximum voltage. The BASIC Stamp’s PWM function is
designed to generate analog voltages when combined with an R/C filter. The PWM function outputs a
series of pulses which have a programmable on-time to off-time ratio (duty cycle). The greater the
duty cycle, the greater voltage output. A duty cycle of 255 will charge the capacitor to five volts.

In this experiment, one half of the LM358 is used to provide a buffered voltage to the LED. The op-
amp buffer prevents the capacitor from discharging too quickly under load. The LED brightness and
dims because the changing voltage through its series resistor changes the current through the LED.
Notice that the LED seems to snap on and get brighter, then dim to a level and snap off. This
happens when the output of the LM358 crosses the forward voltage threshold (the minimum voltage
for the LED to light) of the LED (about 1.8 volts).

Using the digital multimeter, monitor Pin 1 of the LM358.

Experiment #23: Expanded Outputs

StampWorks Manual Version 1.2 • Page 137

Experiment #23:
Expanding Outputs

This experiment demonstrates the expansion of BASIC Stamp outputs with a simple shift register.
Three lines are used to control eight LEDs with a 74x595 shift register.

New PBASIC elements/commands to know:

• SHIFTOUT

Building The Circuit (Note that schematic is NOT chip-centric)

Experiment #23b: Expanded Outputs

Page 138 • StampWorks Manual Version 1.2

' ==
'
' File...... Ex23 - 74HC595.BS2
' Purpose... Expanded outputs with 74HC595
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' This program demostrates a simple method of turning three Stamp lines into
' eight outputs with a 74HC595 shift register.

' --
' I/O Definitions
' --

Clock CON 0 ' shift clock (74HC595.11)
DataOut CON 1 ' serial data out (74HC595.14)
Latch CON 2 ' output latch (74HC595.12)

' --
' Constants
' --

DelayTime CON 100

' --
' Variables
' --

pattern VAR Byte ' output pattern

Experiment #23: Expanded Outputs

StampWorks Manual Version 1.2 • Page 139

' --
' Initialization
' --

Initialize:
 LOW Latch ' make output and keep low
 pattern = %00000001

' --
' Program Code
' --

Go_Forward:
 GOSUB Out_595
 PAUSE DelayTime ' put pattern on 74x595
 pattern = pattern << 1 ' shift pattern to the left
 IF (pattern = %10000000) THEN Go_Reverse ' test for final position
 GOTO Go_Forward ' continue in this direction

Go_Reverse:
 GOSUB Out_595
 PAUSE DelayTime
 pattern = pattern >> 1
 IF (pattern = %00000001) THEN Go_Forward
 GOTO Go_Reverse

' --
' Subroutines
' --

Out_595:
 SHIFTOUT DataOut, Clock, MSBFirst, [pattern] ' send pattern to 74x595
 PULSOUT Latch, 5 ' latch outputs
 RETURN

Behind The Scenes

The BASIC Stamp is extraordinarily flexible in its ability to redefine the direction (input or output) of
its I/O pins, yet very few applications require this flexibility. For the most part, microcontroller
applications will define pins as either inputs or outputs at initialization and the definitions will remain
unchanged through the program.

Experiment #23b: Expanded Outputs

Page 140 • StampWorks Manual Version 1.2

We can use the fact that outputs are outputs and conserve valuable BASIC Stamp I/O lines at the
same time by using a simple component called a serial-in, parallel-out shift register. In this
experiment, the 74x595 is used. With just three BASIC Stamp lines, this program is able to control
eight LEDs through the 74x595.

The 74x595 converts a synchronous serial data stream to eight parallel outputs. Synchronous serial
data actually has two components: the serial data and a serial clock. The BASIC Stamp’s SHIFTOUT
command handles the details of the data and clock lines and writes data to a synchronous device, in
this case, the 74x595. With the 74x595, the data must be latched to the outputs after the shift
process. Latching is accomplished by briefly pulsing the Latch control line. This prevents the outputs
from “rippling” as new data is being shifted in.

Being serial devices, shift registers can be cascaded. By cascading, the BASIC Stamp is able to
control dozens of 74x595 outputs with the same three control lines. To connect cascaded 74x595s,
the clock and latch lines are all tied together and the SQ output from one stage connects to the serial
input of the next stage.

Experiment #23b: Expanded Outputs

StampWorks Manual Version 1.2 • Page 141

Experiment #23b:
Expanding Outputs

This experiment demonstrates further expansion of BASIC Stamp outputs by cascading two 75x595
shift registers.

(Schematic on the next page)

Behind The Scenes

The 75x595 has a Serial Output pin (9) that allows the cascading of multiple devices for more
outputs. In this configuration, the Clock and Latch pins are shared to keep all devices synchronized.

When cascading multiple shift registers, you must send the data for the device that is furthest down
the chain first. Subsequent SHIFTOUT sequences will "push" the data through each register until the
data is loaded into the correct device. Applying the latch pulse at that point causes the new data in
all shift registers to appear at the outputs.

The demo program illustrates this point by independently displaying a binary counter and a ping-
pong visual display using two 75x595 shift registers and eight LEDs for each. Note that the counter
display is controlled by the 75x595 that is furthest from the BASIC Stamp, so its data is shifted out
first.

Experiment #23b: Expanded Outputs

Page 142 • StampWorks Manual Version 1.2

Building The Circuit (Note that schematic is NOT chip-centric)

Experiment #23b: Expanded Outputs

StampWorks Manual Version 1.2 • Page 143

' ==
'
' File...... Ex23b - 74HC595 x 2.BS2
' Purpose... Expanded outputs with 74HC595
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' This program demostrates a simple method of turning three Stamp lines into
' 16 outputs with two 74HC595 shift registers. The data lines into the second
' 74HC595 is fed by the SQh output (pin 9) of the first. The clock and latch
' pins of the second 74HC595 are connected to the same pins on the first.

' --
' I/O Definitions
' --

DataOut CON 0 ' serial data out (74HC595.14)
Clock CON 1 ' shift clock (74HC595.11)
Latch CON 2 ' output latch (74HC595.12)

' --
' Constants
' --

DelayTime CON 100

' --
' Variables
' --

pattern VAR Byte ' output pattern
counter VAR Byte

Experiment #23b: Expanded Outputs

Page 144 • StampWorks Manual Version 1.2

' --
' Initialization
' --

Initialize:
 LOW Latch ' make output and keep low
 pattern = %00000001

' --
' Program Code
' --

Go_Forward:
 counter = counter + 1 ' update counter
 GOSUB Out_595
 PAUSE DelayTime ' put pattern on 74x595
 pattern = pattern << 1 ' shift pattern to the left
 IF (pattern = %10000000) THEN Go_Reverse ' test for final position
 GOTO Go_Forward ' continue in this direction

Go_Reverse:
 counter = counter + 1
 GOSUB Out_595
 PAUSE DelayTime
 pattern = pattern >> 1
 IF (pattern = %00000001) THEN Go_Forward
 GOTO Go_Reverse

' --
' Subroutines
' --

Out_595:
 SHIFTOUT DataOut, Clock, MSBFirst, [counter] ' send counter to 2nd 74HC595
 SHIFTOUT DataOut, Clock, MSBFirst, [pattern] ' send pattern to 1st 74HC595
 PULSOUT Latch, 5 ' latch outputs
 RETURN

Experiment #24: Expanding Inputs

StampWorks Manual Version 1.2 • Page 145

Experiment #24:
Expanding Inputs

This experiment demonstrates the expansion of BASIC Stamp inputs with a simple shift register.
Three lines are used to read an eight-position DIP-switch.

New PBASIC elements/commands to know:

• SHIFTIN

Building The Circuit (Note that schematic is NOT chip-centric)

Experiment #24b: Expanded Inputs

Page 146 • StampWorks Manual Version 1.2

' ==
'
' File...... Ex24 - 74HC165.BS2
' Purpose... Input expansion with 74HC165
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' This program shows how to read eight inputs with just three Stamp pins using
' a 74HC165 shift register.

' --
' I/O Definitions
' --

Clock CON 0 ' shift clock (74x165.2)
DataIn CON 3 ' shift data (74x165.7)
Load CON 4 ' input load (74x165.1)

' --
' Variables
' --

switches VAR Byte ' inputs switches

' --
' Initialization
' --

Initialize:
 HIGH Load ' make output; initialize to 1

Experiment #24: Expanding Inputs

StampWorks Manual Version 1.2 • Page 147

' --
' Program Code
' --

Main:
 GOSUB Read_165 ' read 8-pos dip switch
 DEBUG Home, "Switches = ", BIN8 switches ' display binary mode
 PAUSE 100
 GOTO Main ' do it again

' --
' Subroutines
' --

Read_165:
 PULSOUT Load, 5 ' grab the switch inputs
 SHIFTIN DataIn, Clock, MSBPre, [switches] ' shift them in
 RETURN

Behind The Scenes

The experiment demonstrates SHIFTIN, the complimentary function to SHIFTOUT. In this case, three
BASIC Stamp I/O lines are used to read the state of eight input switches. To read the data from the
74x165, the parallel inputs are latched by briefly pulsing the Load line, then using SHIFTIN to move
the data into the BASIC Stamp.

Note that the DIP-switches are pulled-up to Vdd, so setting them to “ON” creates a logic low input to
the shift register. By using the Q\ (inverted) output from the 74x165, the data arrives at the BASIC
Stamp with Bit 1 indicating a switch is on.

Experiment #24b: Expanding Inputs

StampWorks Manual Version 1.2 • Page 149

Experiment #24b:
Expanding Inputs

This experiment demonstrates further expansion of BASIC Stamp inputs by cascading two shift
registers.

(Schematic on next page)

Behind The Scenes

This program is very similar to 23b in that the Serial Output (pin 9) from one shift register is fed into
the Serial input (pin 10) of the next device up the chain. Note that the non-inverted output is used
on the second 74x165 because the inverted output of the deice connected directly to the BASIC
Stamp will take care of the inversion.

In the program the Read_165 subroutine has been updated to accommodate the second 74x165.
The first SHIFTIN loads the data from the "buttons" shift register into the BASIC Stamp and
transfers the contents from the "switches" shift register into the "buttons" shift register. The second
SHIFTIN loads the "switches" data into the BASIC Stamp.

Experiment #24b: Expanded Inputs

Page 150 • StampWorks Manual Version 1.2

Building The Circuit (Note that schematic is NOT chip-centric)

Experiment #24b: Expanding Inputs

StampWorks Manual Version 1.2 • Page 151

' ==
'
' File...... Ex24b - 74HC165 x 2.BS2
' Purpose... Input expansion with 74HC165
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' This program shows how to read 16 inputs with just three Stamp pins using
' two 74HC165 shift registers. The serial output (pin 9) from one 74HC165
' is fed into the serial input (pin 10) of the second.

' --
' I/O Definitions
' --

Clock CON 0 ' shift clock (74x165.2)
DataIn CON 3 ' shift data (74x165.7)
Load CON 4 ' input load (74x165.1)

' --
' Variables
' --

switches VAR Byte ' inputs switches
buttons VAR Byte ' push button inputs

' --
' Initialization
' --

Initialize:
 HIGH Load ' make output; initialize to 1

Experiment #24b: Expanded Inputs

Page 152 • StampWorks Manual Version 1.2

' --
' Program Code
' --

Main:
 GOSUB Read_165 ' read switches and buttons
 DEBUG Home
 DEBUG "Buttons = ", BIN8 buttons, CR ' display binary mode
 DEBUG "Swithces = ", BIN8 switches
 PAUSE 100
 GOTO Main ' do it again

' --
' Subroutines
' --

Read_165:
 PULSOUT Load, 5 ' latch inputs
 SHIFTIN DataIn, Clock, MSBPre, [buttons] ' get buttons
 SHIFTIN DataIn, Clock, MSBPre, [switches] ' get switches
 RETURN

Experiment #25: Hobby Servo Control

StampWorks Manual Version 1.2 • Page 153

Experiment #25:
Hobby Servo Control

This experiment demonstrates the control of a standard hobby servo. Hobby servos frequently are
used in amateur robotics.

New PBASIC elements/commands to know:

• SDEC, SDEC1 – SDEC16 (DEBUG modifier)

Building The Circuit

' ==
'
' File...... Ex25 - Servo.BS2
' Purpose... Hobby Servo Control
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}

Experiment #25: Hobby Servo Control

Page 154 • StampWorks Manual Version 1.2

'
' ==

' --
' Program Description
' --

' This program shows how to control a standard servo with the BASIC Stamp.

' --
' I/O Definitions
' --

PotCW CON 0 ' clockwise pot input
PotCCW CON 1 ' counter-clockwise pot input
Servo CON 2 ' servo control pin

' --
' Constants
' --

Scale CON $0068 ' scale RCTIME to 0 - 250, BS2
' Scale CON $002C ' BS2sx
' Scale CON $002A ' BS2p

' --
' Variables
' --

rcRt VAR Word ' rc reading - right
rcLf VAR Word ' rc reading - left
diff VAR Word ' difference between readings
sPos VAR Word ' servo position

' --
' Program Code
' --

Main:
 HIGH PotCW ' discharge caps
 HIGH PotCCW
 PAUSE 1

Experiment #25: Hobby Servo Control

StampWorks Manual Version 1.2 • Page 155

 RCTIME PotCW, 1, rcRt ' read clockwise
 RCTIME PotCCW, 1, rcLf ' read counter-clockwise

 rcRt = (rcRt */ Scale) MAX 250 ' scale RCTIME to 0-250
 rcLf = (rcLf */ Scale) MAX 250
 sPos = rcRt - rcLf ' calculate position (-250 to 250)

 PULSOUT Servo, (750 + sPos) ' move the servo
 PAUSE 20

 GOTO Main

Behind The Scenes

Hobby servos are specialized electromechanical devices used most frequently to position the control
surfaces of model aircraft. The position of the servo output shaft is determined by the width of an
incoming control pulse. The control pulse is typically between one and two milliseconds wide. The
servo will center when the control signal is 1.5 milliseconds. In order to maintain its position, the
servo must constantly be updated. The typical update frequency is about 50 times per second.
The BASIC Stamp’s PULSOUT command is ideal command for controlling hobby servos. In this
experiment, two RCTIME circuits are constructed around the 10K potentiometer. This circuit and the
project code can be used to determine the relative position of the potentiometer. The readings from
each side of the potentiometer are scaled between 0 and 250 with the */ and MAX operators. By
subtracting one side from the other, a servo position value between –250 and +250 is returned.

This value is added to the centering position of 750. Remember that PULSOUT works in two-
microsecond units, so a PULSOUT value of 750 will create a pulse that is 1.5 milliseconds wide,
causing the servo to center. When the servo position is –250, the PULSOUT value is 500, creating a
1.0-millisecond pulse. At an sPos value of +250, the PULSOUT value is 1000, creating a 2.0
millisecond control pulse.

This code demonstrates that the BASIC Stamp does, indeed, work with negative numbers. You can
see the value of sPos by inserting this line after the calculation:

 DEBUG Home, "Position: ", SDEC sPos, " "

Negative numbers are stored in two’s compliment format. The SDEC (signed decimal) modifier prints
standard decimal with the appropriate sign.

Experiment #25: Hobby Servo Control

Page 156 • StampWorks Manual Version 1.2

Challenge

Replace the potentiometer with two photocells and update the code to cause the servo to center at
the brightest light source.

Experiment #26: Stepper Motor Control

StampWorks Manual Version 1.2 • Page 157

Experiment #26:
Stepper Motor Control

This experiment demonstrates the control of a small 12-volt unipolar stepper motor. Stepper motors
are used as precision positioning devices in robotics and industrial control applications.

New PBASIC elements/commands to know:

• ABS

Building The Circuit

Experiment #26: Stepper Motor Control

Page 158 • StampWorks Manual Version 1.2

' ==
'
' File...... Ex26 - Stepper.BS2
' Purpose... Stepper Motor Control
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' This program demonstrates unipolar stepper motor control. The pot allows the
' program to control speed and direction of the motor.

' --
' Revision History
' --

' --
' I/O Definitions
' --

PotCW CON 0 ' clockwise pot input
PotCCW CON 1 ' counter-clockwise pot input
Coils VAR OutB ' output to stepper coils

' --
' Constants
' --

Scale CON $0100 ' scale for BS2 (1.0)
' Scale CON $0080 ' scale for BS2sx, BS2p (0.5)

' --
' Variables
' --

Experiment #26: Stepper Motor Control

StampWorks Manual Version 1.2 • Page 159

speed VAR Word ' delay between steps
x VAR Byte ' loop counter
sAddr VAR Byte ' EE address of step data
rcRt VAR Word ' rc reading - right
rcLf VAR Word ' rc reading - left
diff VAR Word ' difference between readings

' --
' EEPROM Data
' --
' __
' ABAB
' -----
Step1 DATA %1100 ' A on B on A\ off B\ off
Step2 DATA %0110 ' A off B on A\ on B\ off
Step3 DATA %0011 ' A off B off A\ on B\ on
Step4 DATA %1001 ' A on B off A\ off B\ on

' --
' Initialization
' --

Initialize:
 DirB = %1111 ' make stepper pins outputs
 speed = 5 ' set starting speed

' --
' Program Code
' --

Main:
 FOR x = 1 TO 100 ' 1 rev forward
 GOSUB Step_Fwd
 NEXT
 PAUSE 200

 FOR x = 1 TO 100 ' 1 rev back
 GOSUB Step_Rev
 NEXT
 PAUSE 200

Step_Demo:
 HIGH PotCW ' discharge caps

Experiment #26: Stepper Motor Control

Page 160 • StampWorks Manual Version 1.2

 HIGH PotCCW
 PAUSE 1
 RCTIME PotCW, 1, rcRt ' read clockwise
 RCTIME PotCCW, 1, rcLf ' read counter-clockwise

 rcRt = (rcRt */ Scale) MAX 600 ' set speed limits
 rcLf = (rcLf */ Scale) MAX 600
 diff = ABS(rcRt - rcLf) ' get difference between readings

 IF (diff < 25) THEN Step_Demo ' allow dead band
 IF (rcLf > rcRt) THEN Step_CCW

Step_CW:
 speed = 60 - (rcRt / 10) ' calculate speed
 GOSUB Step_Fwd ' do a step
 GOTO Step_Demo

Step_CCW:
 speed = 60 - (rcLf / 10)
 GOSUB Step_Rev
 GOTO Step_Demo

' --
' Subroutines
' --

Step_Fwd:
 sAddr = sAddr + 1 // 4 ' point to next step
 READ (Step1 + sAddr), Coils ' output step data
 PAUSE speed ' pause between steps
 RETURN

Step_Rev:
 sAddr = sAddr + 3 // 4 ' point to previous step
 READ (Step1 + sAddr), Coils
 PAUSE speed
 RETURN

Experiment #26: Stepper Motor Control

StampWorks Manual Version 1.2 • Page 161

Behind The Scenes

Stepper motors differ from standard DC motors in that they do not spin freely when power is applied.
For a stepper motor to rotate, the power source must be continuously pulsed in specific patterns.
The step sequence (pattern) determines the direction of the stepper’s rotation. The time between
sequence steps determines the rotational speed. Each step causes the stepper motor to rotate a fixed
angular increment. The stepper motor supplied with the StampWorks kit rotates 3.6 degrees per
step. This means that one full rotation (360 degrees) of the stepper requires 100 steps.

The step sequences for the motor are stored in DATA statements. The StepFwd subroutine will read
the next sequence from the table to be applied to the coils. The StepRev subroutine is identical
except that it will read the previous step. Note the trick with the modulus (//) operator used in
StepRev. By adding the maximum value of the sequence to the current value and then applying the
modulus operator, the sequence goes in reverse. Here’s the math:

0 + 3 // 4 = 3
3 + 3 // 4 = 2
2 + 3 // 4 = 1
1 + 3 // 4 = 0

This experiment reads both sides of the 10K potentiometer to determine its relative position. The
differential value between the two readings is kept positive by using the ABS function. The position is
used to determine the rotational direction and the strength of the position is used to determine the
rotational speed. Remember, the shorter the delay between steps, the faster the stepper will rotate.
A dead-band check is used to cause the motor to stop rotating when the RCTIME readings are nearly
equal.

Challenge

Rewrite the program to run the motor in 200 half steps. Here’s the step sequence:

Step1 = %1000
Step2 = %1100
Step3 = %0100
Step4 = %0110
Step5 = %0010
Step6 = %0011
Step7 = %0001
Step8 = %1001

Experiment #27: Voltage Measurement

StampWorks Manual Version 1.2 • Page 163

Experiment #27:
Voltage Measurement

This experiment demonstrates the use of an analog-to-digital converter to read a variable voltage
input.

Building The Circuit (Note that schematic is NOT chip-centric)

' ==
'
' File...... Ex27 - ADC0831.BS2
' Purpose... Analog to Digital conversion
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' This program deomstrates reading a variable voltage with an ADC0831 analog-
' to-digital convertor chip.

Experiment #27: Voltage Measurement

Page 164 • StampWorks Manual Version 1.2

' --
' I/O Definitions
' --

A2Ddata CON 0 ' A/D data line
A2Dclock CON 1 ' A/D clock
A2Dcs CON 2 ' A/D chip select (low true)

' --
' Variables
' --

result VAR Byte ' result of conversion
mVolts VAR Word ' convert to millivolts

' --
' Initialization
' --

Initialize:
 HIGH A2Dcs

' --
' Program Code
' --

Main:
 GOSUB Read_0831
 mVolts = result */ $139C ' x 19.6 (mv / unit)

 DEBUG Home
 DEBUG "ADC..... ", DEC result, " ", CR
 DEBUG "volts... ", DEC mVolts DIG 3, ".", DEC3 mVolts

 PAUSE 100 ' delay between readings
 GOTO Main ' do it again

Experiment #27: Voltage Measurement

StampWorks Manual Version 1.2 • Page 165

' --
' Subroutines
' --

Read_0831:
 LOW A2Dcs
 SHIFTIN A2Ddata, A2Dclock, MSBPost, [result\9]
 HIGH A2Dcs
 RETURN

Behind The Scenes

Previous projects have used RCTIME to read resistive components. This is a form of analog input, but
isn’t voltage measurement. For that, the BASIC Stamp needs help from an external device. The
simplest way to measure a variable voltage is with an analog-to-digital converter.

In this experiment, the National Semiconductor ADC0831 is used to convert a voltage (0 – 5) to a
synchronous serial signal that can be read by the BASIC Stamp with SHIFTIN. The nature of the
ADC0831 requires nine bits to shift in the result. This is no problem for the BASIC Stamp as the
SHIFTIN function allows the number of shifted bits to be specified.

The eight-bit result will be from zero (zero volts) to 255 (five volts). Dividing five (volts) by 255, we
find that each bit in the result is equal to 19.6 millivolts. For display purposes, the result is converted
to millivolts by multiplying by 19.6 (result */ $139C). A neat trick with DEBUG is used to display the
variable, mVolts. The “DIG 3“ operation prints the whole volts and the DEC3 modifier prints the
fractional volts.

Challenge

Connect the output of Experiment 22 (Pin 1 of the LM358) to the input of the ADC0831. Write a
program to create a voltage using PWM and read it back with the ADC0831.

Experiment #28: Temperature Measurement

StampWorks Manual Version 1.2 • Page 167

Experiment #28:
Temperature Measurement

This experiment demonstrates the use of a digital temperature sensor. Temperature measurement is
a necessary component of environmental control applications (heating and air conditioning).

Building The Circuit (Note that schematic is NOT chip-centric)

' ==
'
' File...... Ex28 - DS1620.BS2
' Purpose... Temperature measurement
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' This program measures temperature using the Dallas Semiconductor DS1620
' temperature sensor.

Experiment #28: Temperature Measurement

Page 168 • StampWorks Manual Version 1.2

' --
' I/O Definitions
' --

DQ CON 0 ' DS1620.1 (data I/O)
Clock CON 1 ' DS1620.2
Reset CON 2 ' DS1620.3

' --
' Constants
' --

RdTmp CON $AA ' read temperature
WrHi CON $01 ' write TH (high temp)
WrLo CON $02 ' write TL (low temp)
RdHi CON $A1 ' read TH
RdLo CON $A2 ' read TL
StartC CON $EE ' start conversion
StopC CON $22 ' stop conversion
WrCfg CON $0C ' write config register
RdCfg CON $AC ' read config register

' --
' Variables
' --

tempIn VAR Word ' raw temperature
sign VAR tempIn.Bit8 ' 1 = negative temperature
tSign VAR Bit
tempC VAR Word ' Celsius
tempF VAR Word ' Fahrenheit

' --
' Initialization
' --

Initialize:
 HIGH Reset ' alert the DS1620
 SHIFTOUT DQ, Clock, LSBFirst, [WrCfg, %10] ' use with CPU; free-run
 LOW Reset
 PAUSE 10
 HIGH Reset
 SHIFTOUT DQ, Clock, LSBFirst, [StartC] ' start conversions
 LOW Reset

Experiment #28: Temperature Measurement

StampWorks Manual Version 1.2 • Page 169

' --
' Program Code
' --

Main:
 GOSUB Get_Temperature ' read the DS1620

 DEBUG Home
 DEBUG "DS1620", CR
 DEBUG "------", CR
 DEBUG SDEC tempC, " C ", CR
 DEBUG SDEC tempF, " F ", CR

 PAUSE 1000 ' pause between readings
 GOTO Main

' --
' Subroutines
' --

Get_Temperature:
 HIGH Reset ' alert the DS1620
 SHIFTOUT DQ, Clock, LSBFIRST, [RdTmp] ' give command to read temp
 SHIFTIN DQ, Clock, LSBPRE, [tempIn\9] ' read it in
 LOW Reset ' release the DS1620

 tSign = sign ' save sign bit
 tempIn = tempIn / 2 ' round to whole degrees
 IF (tSign = 0) THEN No_Neg1
 tempIn = tempIn | $FF00 ' extend sign bits for negative

No_Neg1:
 tempC = tempIn ' save Celsius value
 tempIn = tempIn */ $01CC ' multiply by 1.8
 IF (tSign = 0) THEN No_Neg2 ' if negative, extend sign bits
 tempIn = tempIn | $FF00

No_Neg2:
 tempIn = tempIn + 32 ' finish C -> F conversion
 tempF = tempIn ' save Fahrenheit value
 RETURN

Experiment #28: Temperature Measurement

Page 170 • StampWorks Manual Version 1.2

Behind The Scenes

The largest organ of the human body is the skin and it is most readily affected by temperature. Little
wonder then that so much effort is put into environmental control systems (heating and air
conditioning).

This experiment uses the Dallas Semiconductor DS1620 digital thermometer/thermostat chip. This
chip measures temperature and makes it available to the BASIC Stamp through a synchronous serial
interface. The DS1620 is an intelligent device and, once programmed, is capable of stand-alone
operation using the T(com), T(hi) and T(lo) outputs.

The DS1620 requires initialization before use. In active applications like this, the DS1620 is
configured for free running with a CPU. After the configuration data is sent to the DS1620, a delay of
10 milliseconds is required so that the configuration can be written to the DS1620’s internal EEPROM.
After the delay, the DS1620 is instructed to start continuous conversions. This will ensure a current
temperature reading when the BASIC Stamp requests it.

To retrieve the current temperature, the Read Temperature ($AA) command byte is sent to the
DS1620. Then the latest conversion value is read back. The data returned is nine bits wide. Bit8
indicates the sign of the temperature. If negative (sign bit is 1), the other eight bits hold the two’s
compliment value of the temperature. Whether negative or positive, each bit of the temperature is
equal to 0.5 degrees Celsius.

The Celsius temperature is converted to whole degrees by dividing by two. If negative, the upper-
byte bits are set to 1 so that the value will print properly with SDEC (signed numbers in the BASIC
Stamp must be 16 bits in length). The temperature is converted to Fahrenheit using the standard
formula:

F = (C * 1.8) + 32

Challenge

Rewrite the program to write the temperature values to the StampWorks LCD module.

Experiment #29: Advanced 7-Segment Multiplexing

StampWorks Manual Version 1.2 • Page 171

Experiment #29:
Advanced 7-Segment Multiplexing

This experiment demonstrates the use of seven-segment displays with an external multiplexing
controller. Multi-digit seven-segment displays are frequently used on vending machines to display the
amount of money entered.

Building The Circuit (Note that schematic is NOT chip-centric)

Experiment #29: Advanced Seven-Segment Multiplexing

Page 172 • StampWorks Manual Version 1.2

Experiment #29: Advanced 7-Segment Multiplexing

StampWorks Manual Version 1.2 • Page 173

' ==
'
' File...... Ex29 - Change Counter.BS2
' Purpose... Controlling 7-segment displays with MAX7219
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' This program is a coin counter -- it will count pennies, nickels, dimes and
' quarters using pushbutton inputs. The "bank" is displayed on four 7-segment
' LED displays that are controlled with a MAX7219.

' --
' Revision History
' --

' --
' I/O Definitions
' --

DataPin CON 7 ' data pin (MAX7219.1)
Clock CON 6 ' clock pin (MAX7219.13)
Load CON 5 ' load pin (MAX7219.12)
Coins VAR InL ' coin count inputs

' --
' Constants
' --

Decode CON $09 ' bcd decode register
Brite CON $0A ' intensity register
Scan CON $0B ' scan limit register
ShutDn CON $0C ' shutdown register (1 = on)
Test CON $0F ' display test mode

Experiment #29: Advanced Seven-Segment Multiplexing

Page 174 • StampWorks Manual Version 1.2

DecPnt CON %10000000
Blank CON %1111 ' blank a digit

Yes CON 1
No CON 0

' --
' Variables
' --

money VAR Word ' current money count
deposit VAR Byte ' coins deposited
penny VAR deposit.Bit0 ' bit values of deposit
nickel VAR deposit.Bit1
dime VAR deposit.Bit2
quarter VAR deposit.Bit3
dollar VAR deposit.Bit4
digit VAR Nib ' display digit
d7219 VAR Byte ' data for MAX7219
index VAR Nib ' loop counter
idxOdd VAR index.Bit0 ' is index odd? (1 = yes)

' --
' EEPROM Data
' --

' Segments .abcdefg
' --------
Full DATA %01000111 ' F
 DATA %00111110 ' U
 DATA %00001110 ' L
 DATA %00001110 ' L

' --
' Initialization
' --

Initialize:
 DirL = %11100000 ' data, clock and load as outs
 ' coins as inputs

 FOR index = 0 TO 7
 LOOKUP index, [Scan, 3, Brite, 5, Decode, $0F, ShutDn, 1], d7219
 SHIFTOUT DataPin, Clock, MSBFirst, [d7219]

Experiment #29: Advanced 7-Segment Multiplexing

StampWorks Manual Version 1.2 • Page 175

 IF (idxOdd = No) THEN No_Load
 PULSOUT Load, 5 ' load parameter

No_Load:
 NEXT

 GOSUB Show_The_Money

' --
' Program Code
' --

Main:
 GOSUB Get_Coins
 IF (deposit = 0) THEN Main ' wait for coins

 money = money + (penny * 1) ' add coins
 money = money + (nickel * 5)
 money = money + (dime * 10)
 money = money + (quarter * 25)
 money = money + (dollar * 100)

 GOSUB Show_The_Money ' update the display
 PAUSE 100
 GOTO Main

' --
' Subroutines
' --

Get_Coins:
 deposit = %00011111 ' enable all coin inputs
 FOR index = 1 TO 10
 deposit = deposit & ~Coins ' test inputs
 PAUSE 5 ' delay between tests
 NEXT
 RETURN

Show_The_Money:
 IF (money >= 9999) THEN Show_Full
 FOR index = 4 TO 1
 d7219 = Blank
 IF ((index = 4) AND (money < 1000)) THEN Put_Digit
 d7219 = money DIG (index - 1)

Experiment #29: Advanced Seven-Segment Multiplexing

Page 176 • StampWorks Manual Version 1.2

 IF (index <> 3) THEN Put_Digit
 d7219 = d7219 | DecPnt ' decimal point on DIGIT 3

Put_Digit:
 SHIFTOUT DataPin, Clock, MSBFirst, [index, d7219]
 PULSOUT Load, 5
 NEXT
 RETURN

Show_Full:
 ' turn BCD decoding off
 SHIFTOUT DataPin, Clock, MSBFirst, [Decode, 0]
 PULSOUT Load, 5
 FOR index = 4 TO 1
 READ (4 - index + Full), d7219 ' read and send letter
 SHIFTOUT DataPin, Clock, MSBFirst, [index, d7219]
 PULSOUT Load, 5
 NEXT

 END

Behind The Scenes

Multiplexing multiple seven-segment displays requires a lot of effort that consumes most of the
computational resources of the BASIC Stamp. Enter the MAXIM MAX7219 LED display driver. Using
just three of the BASIC Stamp’s I/O lines, the MAX7219 can be used to control up to eight, seven-
segment displays or 64 discrete LEDs (four times the number of I/O pins available on the BASIC
Stamp).

The MAX7219 connects to the LED displays in a straightforward way; pins SEG A through SEG G and
SEG DP connect to segments A through G and the decimal point of all of the common-cathode
displays. Pins DIGIT 0 through DIGIT 7 connect to the individual cathodes of each of the displays. If
you use less than eight digits, omit the highest digit numbers. For example, this experiment uses four
digits, numbered 0 through 3, not 4 through 7.

The MAX7219 has a scan-limit feature than limits display scanning to digits 0 through n, where n is
the highest digit number. This feature ensures that the chip doesn’t waste time and duty cycles
(brightness) trying to scan digits that aren’t there.

Experiment #29: Advanced 7-Segment Multiplexing

StampWorks Manual Version 1.2 • Page 177

When the MAX7219 is used with seven-segment displays, it can be configured to automatically
convert binary-coded decimal (BCD) values into appropriate patterns of segments. This makes the
display of decimal numbers simple. The BCD decoding feature can be disabled to display custom
patterns. This experiment does both.

From a software standpoint, driving the MAX7219 requires the controller to:

Shift 16 data bits out to the device, MSB first.
Pulse the Load line to transfer the data.

Each 16-bit data package consists of a register address followed by data to store to that register. For
example, the 16-bit value $0407 (hex) writes a “7” to the fourth digit of the display. If BCD decoding
is turned on for that digit, the numeral “7” will appear on that digit of the display. If decoding is not
turned on, three LEDs will light, corresponding to segments G, F, and E.

In this experiment, the MAX7219 is initialized to:

Scan = 3 (Display digits 0 – 3)
Brightness = 5
Decode = $0F (BCD decode digits 0 – 3)
Shutdown = 1 (normal operation)

Initialization of the MAX7219 is handled by a loop. Each pass through the loop reads a register
address or data value from a LOOKUP table. After each data value is shifted out, the address and data
are latched into the MAX7219 by pulsing the Load line.

Most of the work takes place in the subroutine called Show_The_Money. When the money count is
less than 9999, the value will be displayed on the seven-segment digits, otherwise the display will
read “FULL.” The routine scans through each digit of money and sends the digit position and value
(from the DIG operator) to the MAX7219. Since the display shows dollars and cents, the decimal
point on the third digit is enabled. When the position and digit have been shifted out, the display is
updated by pulsing the Load line. To keep the display neat, the leading zero is blanked when the
money value is less than 1000.

When the value of money reaches 9999, the display will change to “FULL.” This is accomplished by
disabling the BCD decoding of the MAX7219 and sending custom letter patterns to the MAX7219.
These patterns are stored in DATA statements.

Experiment #29: Advanced Seven-Segment Multiplexing

Page 178 • StampWorks Manual Version 1.2

The main loop of the program is simple: it scans the switch inputs with Get_Coins and updates the
money count for each switch pressed. This particular code is an excellent example of using variable
aliases for readability.

Challenge

Modify the code in experiment 27 to display the input voltage on the seven-segment displays.

Experiment #30: Using a Real-Time Clock

StampWorks Manual Version 1.2 • Page 179

Experiment #30:
Using a Real-Time Clock

This experiment demonstrates the BASIC Stamp’s time-keeping functions through the use of an
external real-time clock (RTC). RTC time capability is crucial to time-of-day applications and
applications that require the measurement of elapsed time.

Building The Circuit (Note that schematic is NOT chip-centric)

' ==
'
' File...... Ex30 - DS1302.BS2
' Purpose... RTC Control
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

Experiment #30: Using a Real-Time Clock

Page 180 • StampWorks Manual Version 1.2

' --
' Program Description
' --

' This program demonstrates the control and use of an external real-time clcok
' chip, the DS1302 from Dallas Semiconductor.

' --
' I/O Definitions
' --

DataIO CON 0 ' DS1302.6
Clock CON 1 ' DS1302.7
CS1302 CON 2 ' DS1302.5
BtnsIn VAR InB ' button input

' --
' Constants
' --

WrSecs CON $80 ' write seconds
RdSecs CON $81 ' read seconds
WrMins CON $82 ' write minutes
RdMins CON $83 ' read minutes
WrHrs CON $84 ' write hours
RdHrs CON $85 ' read hours
CWPr CON $8E ' write protect register
WPr1 CON $80 ' set write protect
WPr0 CON $00 ' clear write protect
WrBurst CON $BE ' write burst of data
RdBurst CON $BF ' read burst of data
WrRam CON $C0 ' RAM address control
RdRam CON $C1

Yes CON 1
No CON 0

Hr24 CON 0
Hr12 CON 1

ClockMode CON Hr12 ' use AM/PM mode

Experiment #30: Using a Real-Time Clock

StampWorks Manual Version 1.2 • Page 181

' --
' Variables
' --

index VAR Byte ' loop counter
reg VAR Byte ' DS1302 address to read/write
ioByte VAR Byte ' data to/from DS1302

secs VAR Byte ' seconds
secs01 VAR secs.LowNib
secs10 VAR secs.HighNib
mins VAR Byte ' minutes
mins01 VAR mins.LowNib
mins10 VAR mins.HighNib
hrs VAR Byte ' hours
hrs01 VAR hrs.LowNib
hrs10 VAR hrs.HighNib
day VAR Byte ' day

ampm VAR hrs.Bit5 ' 0 = AM, 1 = PM
tMode VAR hrs.Bit7 ' 0 = 24, 1 = 12

rawTime VAR Word ' raw storage of time values
work VAR Byte ' work variable for display output
oldSecs VAR Byte ' previous seconds value
apChar VAR Byte ' "A" or "P"

btns VAR Nib ' button inputs
btnMin VAR btns.Bit0 ' update minutes
btnHrs VAR btns.Bit1 ' update hours
btnDay VAR btns.Bit2 ' update day
btnBack VAR btns.Bit3 ' go backward

' --
' EEPROM Data
' --

Su DATA "Sunday", 0
Mo DATA "Monday", 0
Tu DATA "Tuesday", 0
We DATA "Wednesday", 0
Th DATA "Thursday", 0
Fr DATA "Friday", 0
Sa DATA "Saturday", 0

Experiment #30: Using a Real-Time Clock

Page 182 • StampWorks Manual Version 1.2

' --
' Initialization
' --

Initialize:
 DirL = %00000111 ' switches are ins, others outs

 reg = CWPr ' clear write protect register
 ioByte = WPr0
 GOSUB RTC_Out

 oldSecs = $99 ' set the display flag
 hrs = $06 ' preset time to 6:00 AM
 GOSUB Set_Time

' --
' Program Code
' --

Main1:
 GOSUB Get_Time ' read the DS1302
 IF (secs = oldSecs) THEN Check_Buttons ' time for update?

Main2:
 GOSUB Show_Time ' yes, show it
 oldSecs = secs ' mark it

Check_Buttons:
 GOSUB Get_Buttons
 IF (btns = 0) THEN Do_Some_Task ' let Stamp do other work
 IF (btnBack = Yes) THEN Go_Back ' back button pressed?

Go_Forward:
 rawTime = rawTime + btnMin ' add one minute
 rawTime = rawTime + (btnHrs * 60) ' add one hour
 day = (day + btnDay) // 7 ' next day
 GOTO Update_Clock

Go_Back:
 IF (btns <= %1000) THEN Do_Some_Task ' no update button pressed
 rawTime = rawTime + (btnMin * 1439) ' subtract one minute
 rawTime = rawTime + (btnHrs * 1380) ' subtract one hour
 day = (day + (btnDay * 6)) // 7 ' previous day

Update_Clock: ' send updated value to DS1302
 rawTime = rawTime // 1440 ' clean-up time mods

Experiment #30: Using a Real-Time Clock

StampWorks Manual Version 1.2 • Page 183

 GOSUB Set_Raw_Time ' set the clock with rawTime
 GOTO Main2

Do_Some_Task: ' work when not setting clock

 ' other code here

 GOTO Main1

' --
' Subroutines
' --

Show_Time:
 DEBUG Home
 LOOKUP day,[Su,Mo,Tu,We,Th,Fr,Sa],work ' get address of day string

Get_Day_Char:
 READ work, ioByte ' grab a character
 IF (ioByte = 0) THEN Check_Clock_Mode ' if 0, string is complete
 DEBUG ioByte ' print the character
 work = work + 1 ' point to next
 GOTO Get_Day_Char

Check_Clock_Mode:
 DEBUG " ", CR ' clear day name debris
 IF (ClockMode = Hr24) THEN Show24

Show12:
 DEBUG DEC2 12 - (24 - (hrs10 * 10 + hrs01) // 12)
 DEBUG ":", HEX2 mins, ":", HEX2 secs
 apChar = "A" ' assume AM
 IF (hrs < $12) THEN Show_AMPM ' check time
 apChar = "P" ' hrs was >= $12

Show_AMPM:
 DEBUG " ", apChar, "M" ' print AM or PM
 GOTO Show_Time_Done

Show24:
 DEBUG HEX2 hrs, ":", HEX2 mins, ":", HEX2 secs

Show_Time_Done:
 RETURN

Get_Buttons:

Experiment #30: Using a Real-Time Clock

Page 184 • StampWorks Manual Version 1.2

 btns = %1111 ' enable all button inputs
 FOR index = 1 TO 10
 btns = btns & ~BtnsIn ' test inputs
 PAUSE 5 ' delay between tests
 NEXT
 PAUSE 200 ' slow held button(s)
 RETURN

RTC_Out: ' send ioByte to reg in DS1302
 HIGH CS1302
 SHIFTOUT DataIO, Clock, LSBFirst, [reg, ioByte]
 LOW CS1302
 RETURN

RTC_In: ' read ioByte from reg in DS1302
 HIGH CS1302
 SHIFTOUT DataIO, Clock, LSBFirst, [reg]
 SHIFTIN DataIO, Clock, LSBPre, [ioByte]
 LOW CS1302
 RETURN

Set_Raw_Time: ' convert rawTime to BCD
 hrs10 = rawTime / 600
 hrs01 = (rawTime // 600) / 60
 mins10 = (rawTime // 60) / 10
 mins01 = rawTime // 10

Set_Time: ' write data with burst mode
 HIGH CS1302
 SHIFTOUT DataIO, Clock, LSBFirst, [WrBurst]
 SHIFTOUT DataIO, Clock, LSBFirst, [secs, mins, hrs, 0, 0, day, 0, 0]
 LOW CS1302
 RETURN

Get_Time: ' read data with burst mode
 HIGH CS1302
 SHIFTOUT DataIO, Clock, LSBFirst, [RdBurst]
 SHIFTIN DataIO, Clock, LSBPre, [secs, mins, hrs, day, day, day]
 LOW CS1302
 rawTime = ((hrs10 & %11) * 600) + (hrs01 * 60)
 rawTime = rawTime + (mins10 * 10) + mins01
 RETURN

Experiment #30: Using a Real-Time Clock

StampWorks Manual Version 1.2 • Page 185

Behind The Scenes

While it is possible to implement rudimentary timekeeping functions in code with PAUSE, problems
arise when BASIC Stamp needs to handle other activities. This is especially true when an application
needs to handle time, day and date. The cleanest solution is an external real-time clock. In this
experiment, we’ll use the Dallas Semiconductor DS1302. Like the DS1620, the DS1302 requires only
three lines to communicate with the BASIC Stamp. Since these two devices are compatible with each
other, the clock and data lines to can be shared giving the BASIC Stamp real-time clock and
temperature measurement using only four I/O lines.

Once programmed the DS1302 runs by itself and accurately keeps track of seconds, minutes, hours
(with an AM/PM indicator, if running in 12-hour mode), date of month, month, day of week and year
with leap year compensation valid up to the year 2100. As a bonus, the DS1302 contains 31 bytes of
RAM that we can use as we please. And for projects that use main’s power, the DS1302 also contains
a trickle-charging circuit that can charge a back-up battery.

The DS1302 is a register-based device, that is, each element of the time and date is stored in its own
register (memory address). For convenience, two modes of reading and writing are available: register
and burst. With register access, individual elements can be written or read. With burst access, all of
the registers can be set at once and any number (starting with seconds) can be read back.

In order to keep our interface with the DS1302 simple, this experiment uses it in the 24-hour mode.
In this mode, we don’t have to fuss with the DS1302 AM/PM indicator bit. For a 12-hour display, we’ll
deduce AM/PM mathematically. In the code, time is handled as a single, word-sized variable
(rawTime) that represents the number of minutes past midnight. This will make calculating durations
and comparing alarm times with the current time very straightforward.

Another compelling reason to use a raw time format is that the DS1302 stores its registers in BCD
(binary coded decimal). BCD is a method of storing a value between zero and 99 in a byte-sized
variable. The ones digit occupies the lower nibble, the tens digit the upper. Neither nibble of a BCD
byte is allowed to have a value greater than nine. Thankfully, the BASIC Stamp allows nibble-sized
variables and, more importantly, it allows variables to be aliased.

This experiment demonstrates the DS1302 basics by setting the clock, then polling it for updates.
Conversion to and from the DS1320 BCD register format is handled by the subroutines that set and
retrieve information in burst mode.

Four pushbuttons are used to set the day, hours and minutes of the clock. Normally, the buttons
cause each element to increment. By holding the fourth button, each element will roll back. When no

Experiment #30: Using a Real-Time Clock

Page 186 • StampWorks Manual Version 1.2

button is pressed, the program passes to a routine called Do_Some_Task. This is where you would
put additional code (reading a DS1620, for example).

Program output is sent to a DEBUG window. The Show_Time subroutine handles printing the day and
time in the format specified by ClockMode.

Challenge (Advanced)

Add a DS1620 using the connections shown below. Write a program that tracks current, minimum
and maximum temperature and will display (use DEBUG) the time and date on which the minimum
and maximum temperature was measured.

Experiment #31: Serial Communications

StampWorks Manual Version 1.2 • Page 187

Experiment #31:
Serial Communications

This experiment demonstrates the BASIC Stamp’s ability to communicate with other computers
through any of its I/O pins. It also demonstrates the ability to store information in the BASIC Stamp’s
EEPROM space.

New PBASIC elements/commands to know:

• SERIN
• SEROUT
• WAIT (SERIN modifier)
• HEX (SERIN/SEROUT modifier)
• BIN (SERIN/SEROUT modifier)
• WRITE

Building The Circuit (Note that schematic is NOT chip-centric)

Experiment #31: Serial Communications

Page 188 • StampWorks Manual Version 1.2

' ==
'
' File...... Ex31 - PollStamp.BS2
' Purpose... Serial Communications
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --

' This program demonstrates serial communications through Stamp I/O pins.

' --
' I/O Definitions
' --

LEDs VAR OutA ' LED outputs
DQ CON 4 ' DS1620.1 (through 1K resistor)
Clock CON 5 ' DS1620.2
Reset CON 6 ' DS1620.3

RxD CON 14 ' serial input - to INEX RxD
TxD CON 15 ' serial output - to INEX TxD

' --
' Constants
' --

Baud96 CON 84 ' 9600-8-N-1, BS2/BS2e
' Baud96 CON 240 ' BS2sx/BS2p

CMenu CON $FF ' show command menu
CID CON $F0 ' get string ID
CSet CON $F1 ' set string ID
CTmp CON $A0 ' get DS1620 - display raw count
CTmpC CON $A1 ' get DS1620 - display in C
CTmpF CON $A2 ' get DS1620 - display in F

Experiment #31: Serial Communications

StampWorks Manual Version 1.2 • Page 189

CStat CON $B0 ' get digital output status
CLEDs CON $B1 ' set LED outputs

RTmp CON $AA ' read temperature
WTHi CON $01 ' write TH (high temp register)
WTLo CON $02 ' write TL (low temp register)
RTHi CON $A1 ' read TH
RTLo CON $A2 ' read TL
StartC CON $EE ' start conversion
StopC CON $22 ' stop conversion
WrCfg CON $0C ' write configuration register
RdCfg CON $AC ' read configuration register

' --
' Variables
' --

cmd VAR Byte ' command from PC/terminal
eeAddr VAR Byte ' EE address pointer
eeData VAR Byte ' EE data
param VAR Word ' parameter from PC
char VAR param.LowByte ' character from terminal
tmpIn VAR Word ' raw data from DS1620
halfBit VAR tmpIn.Bit0 ' 0.5 degree C indicator
sign VAR tmpIn.Bit8 ' 1 = negative temperature
tempC VAR Word ' degrees C in tenths
tempF VAR Word ' degrees F in tenths
potVal VAR Word ' reading from BSAC pot
buttons VAR Nib ' input buttons

' --
' EEPROM Data
' --

ID DATA "StampWorks 1.2", CR ' CR-terminated string

' --
' Initialization
' --

Initialize:
 DirA = %1111 ' LED pins are outputs

 HIGH Reset ' alert the DS1620

Experiment #31: Serial Communications

Page 190 • StampWorks Manual Version 1.2

 SHIFTOUT DQ, Clock, LSBFirst, [WrCfg, %10] ' use with CPU; free-run
 LOW Reset
 PAUSE 10
 HIGH Reset
 SHIFTOUT DQ, Clock, LSBFirst, [StartC] ' start conversions
 LOW Reset

 GOTO Show_Menu

' --
' Program Code
' --

Main:
 cmd = 0
 SERIN RxD, Baud96, [WAIT ("?"), HEX cmd]

 ' check for menu request
 IF (cmd = CMenu) THEN Show_Menu

 ' convert command for branching
 LOOKDOWN cmd, [CID, CSet, CTmp, CTmpC, CTmpF, CStat, CLEDs], cmd

 ' branch to requested routine
 BRANCH cmd, [Show_ID, Set_ID, Show_Temp, Show_Temp_C, Show_Temp_F]
 cmd = cmd - 5
 BRANCH cmd, [Show_Status, Set_LEDs]

BadCommand:
 SEROUT TxD, Baud96, ["Invalid Command: ", HEX2 cmd, CR]
 GOTO Main

' --
' Subroutines
' --

Show_Menu:
 SEROUT TxD, Baud96, [CLS]
 SEROUT TxD, Baud96, ["========================", CR]
 SEROUT TxD, Baud96, [" StampWorks Monitor ", CR]
 SEROUT TxD, Baud96, ["========================", CR]
 SEROUT TxD, Baud96, ["?FF - Show Menu", CR]
 SEROUT TxD, Baud96, ["?F0 - Display ID", CR]
 SEROUT TxD, Baud96, ["?F1 - Set ID", CR]
 SEROUT TxD, Baud96, ["?A0 - DS1620 (Raw count)", CR]

Experiment #31: Serial Communications

StampWorks Manual Version 1.2 • Page 191

 SEROUT TxD, Baud96, ["?A1 - Temperature (C)", CR]
 SEROUT TxD, Baud96, ["?A2 - Temperature (F)", CR]
 SEROUT TxD, Baud96, ["?B0 - Display LED Status", CR]
 SEROUT TxD, Baud96, ["?B1 - Set LEDs", CR, CR]
 SEROUT TxD, Baud96, ["Please enter a command.", CR, CR]
 GOTO Main

Show_ID:
 SEROUT TxD, Baud96, ["ID="] ' label output
 eeAddr = ID ' point to first character of ID

Get_EE:
 READ eeAddr, eeData ' read a character from EEPROM
 SEROUT TxD, Baud96, [eeData] ' print the character
 eeAddr = eeAddr + 1 ' point to next character
 IF (eeData <> CR) THEN Get_EE ' if not CR, read another
 GOTO Main

Set_ID:
 eeAddr = ID ' point to ID location

Get_Char:
 SERIN RxD, Baud96, [char] ' get character from PC
 WRITE eeAddr, char ' write character to EEPROM
 eeAddr = eeAddr + 1 ' point to next location
 IF (char <> CR) THEN Get_Char ' if not CR, wait for another
 GOTO Show_ID ' confirm new ID

Show_Temp:
 GOSUB Get_Temp
 ' send raw temp to PC
 SEROUT TxD, Baud96, ["DS1620=", DEC tmpIn, CR]
 GOTO Main

Show_Temp_C:
 GOSUB Get_Temp
 IF (sign = 0) THEN No_Neg_C
 tmpIn = 0 ' only temps above freezing

No_Neg_C:
 ' convert raw count to 10ths C
 tempC = tmpIn * 5
 SEROUT TxD, Baud96, ["TempC=", DEC (tempC/10), ".", DEC (tempC // 10), CR]

Experiment #31: Serial Communications

Page 192 • StampWorks Manual Version 1.2

 GOTO Main

Show_Temp_F:
 GOSUB Get_Temp
 IF (sign = 0) THEN No_Neg_F
 tmpIn = 0

No_Neg_F:
 tempF = (tmpIn * 9) + 320 ' convert raw count to 10ths F
 SEROUT TxD, Baud96, ["TempF=", DEC (tempF / 10), ".", DEC (tempF // 10), CR]
 GOTO Main

Show_Status:
 SEROUT TxD, Baud96, ["Status=", BIN4 LEDs, CR]
 GOTO Main

Set_LEDs:
 ' wait for output bits
 ' - as binary string
 '
 SERIN RxD, Baud96, [BIN param]
 LEDs = param.LowNib ' set the outputs
 GOTO Show_Status ' confirm new outputs

Get_Temp:
 HIGH Reset ' alert the DS1620
 SHIFTOUT DQ, Clock, LSBFirst, [RTmp] ' read temperature
 SHIFTIN DQ, Clock, LSBPre, [tmpIn\9] ' get the temperature
 LOW Reset
 RETURN

Behind The Scenes

Without asynchronous serial communications the world would not be what it is today. Businesses
would be hard pressed to exchange information with each other. There would be no ATMs for
checking our bank accounts and withdrawing funds. There would be no Internet.

Previous experiments have used synchronous serial communications. In that scheme, two lines are
required: clock and data. The benefit is the automatic synchronization of sender and receiver. The
downside is that it requires at least two wires to send a message.

Experiment #31: Serial Communications

StampWorks Manual Version 1.2 • Page 193

Asynchronous serial communications requires only a single wire to transmit a message. What is
necessary to allow this scheme is that both the sender and receiver must agree on the
communications speed before the transmission can be received. Some “smart” systems can detect
the communications speed (baud rate), the BASIC Stamp cannot.

In this experiment we’ll use SEROUT to send information to a terminal program and SERIN to take
data in. The input will usually be a command and sometimes the command will be accompanied with
new data.

After initializing the LED outputs and the DS1620, the program enters the main loop and waits for
input from the terminal program. First, SERIN waits for the “?” character to arrive, ignoring
everything else until that happens. The question mark, then, is what signifies the start of a query.
Once a question mark arrives, the HEX modifier causes the BASIC Stamp to look for valid hex
characters (0 - 9, A - F). The arrival of any non-hex character (usually a carriage return [Enter]
when using a terminal) tells the BASIC Stamp to stop accepting input (to the variable called param in
our case) and continue on.

What actually has happened is that the BASIC Stamp has used the SERIN function to do a text-to-
numeric conversion. Now that a command is available, the program uses LOOKDOWN to decode the
command and BRANCH to jump to the requested subroutine if the command was valid. If the
command isn’t valid, a message and the offending input is displayed.

The BASIC Stamp responds to a request sending a text string using SEROUT set to 9600 baud (so we
can use the BASIC Stamp’s DEBUG terminal as the host). Each of the response strings consists of a
label, the equal sign, the value of that particular parameter and finally, a carriage return. When using
a terminal program, the output is easily readable. Something like this:

ID=Parallax BS2

The carriage return at the end of the output gives us a new line when using a terminal program and
serves as an “end of input” when we process the input with our own program (similar to BASIC
Stamp Plot Lite). The equal sign can be used as a delimiter when another computer program
communicates with the BASIC Stamp. We’ll use it to distinguish the label from its value.

Most of the queries are requests for information. Two of them, however, can modify information that
is stored in the BASIC Stamp.

Experiment #31: Serial Communications

Page 194 • StampWorks Manual Version 1.2

The first one is “?F1” which will allow us to write a string value to the BASIC Stamp’s EEPROM (in a
location called ID). When F1 is received as a command value, the program jumps to the subroutine
called Set_ID. On entry to Set_ID, the EE pointer called addr is initialized, then the BASIC Stamp
waits for a character to arrive. Notice that no modifier is used here. Since terminal programs and the
BASIC Stamp represent characters using ASCII codes, we don’t have to do anything special. When a
character does arrive, WRITE is used to put the character into EEPROM and the address pointer is
incremented. If the last character was a carriage return (13), the program outputs the new string
(using the code at Show_ID), otherwise it loops back and waits for another character.

The second modifying query is “?B1” which allows us to set the status of four LEDs. Take a look at
the subroutine called Set_LEDs. This time, the BIN modifier of SERIN is used so that we can easily
define individual bits we wish to control. By using the BIN modifier, our input will be a string of ones
and zeros (any other character will terminate the binary input). In this program, a “1” will cause the
LED to turn on and a “0” will cause the LED to turn off. Here’s an example of using the B1 query.

?B1 0011 <CR>

The figure below shows an actual on-line session using the BASIC Stamp’s DEBUG terminal. To run
the experiment, follow these steps:

1. Remove components from previous experiment.
2. Enter and download the program
3. Remove power from StampWorks lab board and build the circuit
4. Move the programming cable to the RS-232 Interfacing port
5. Open a DEBUG window by clicking on the DEBUG icon
6. Set the StampWorks lab board power switch to on.

Experiment #31: Serial Communications

StampWorks Manual Version 1.2 • Page 195

Challenge (for PC programmers)

Write a PC program that interfaces with this experiment.

Experiment #32: I2C Communications

StampWorks Manual Version 1.2 • Page 197

Experiment #32:
I2C Communications

This experiment demonstrates the BASIC Stamp’s ability to communicate with other devices through
the use of the popular Philips I2C protocol. The experiment uses this protocol to write and read data
to a serial EEPROM and the low-level I2C routines can be used to communicate with any I2C device.

Building The Circuit

' ==
'
' File...... Ex32 - 24LC32.BS2
' Purpose... 24LC32 control via I2C
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com
' Started...
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --
'
' This program demonstrates essential I2C routines and communication with the
' Microchip 24LC32 serial EEPROM.
'
' The connections for this program conform to the BS2p I2CIN and I2COUT

Experiment #32: I2C Communications

Page 198 • StampWorks Manual Version 1.2

' commands. Use this program for the BS2, BS2e or BS2sx. There is a separate
' program for the BS2p.

' --
' I/O Definitions
' --
'
SDA CON 8 ' I2C serial data line
SCL CON 9 ' I2C serial clock line

' --
' Constants
' --

DevType CON %1010 << 4 ' device type
DevAddr CON %000 << 1 ' address = %000 -> %111
Wr2432 CON DevType | DevAddr | 0 ' write to 24LC32
Rd2432 CON DevType | DevAddr | 1 ' read from 24LC32

ACK CON 0 ' acknowledge bit
NAK CON 1 ' no ack bit

CrsrXY CON 2 ' DEBUG Position Control

' --
' Variables
' --

i2cSDA VAR Nib ' I2C serial data pin
i2cData VAR Byte ' data to/from device
i2cWork VAR Byte ' work byte for TX routine
i2cAck VAR Bit ' ACK bit from device

eeAddr VAR Word ' address: 0 - 4095
test VAR Nib
outVal VAR Byte ' output to EEPROM
inVal VAR Byte ' input from EEPROM

' --
' Initialization
' --

Initialize:

Experiment #32: I2C Communications

StampWorks Manual Version 1.2 • Page 199

 PAUSE 250 ' let DEBUG open
 DEBUG CLS, "24LC32 Demo", CR, CR ' setup output screen
 DEBUG "Address... ", CR
 DEBUG "Output.... ", CR
 DEBUG "Input..... ", CR

 i2cSDA = SDA ' define SDA pin

' --
' Program Code
' --

Main:
 FOR eeAddr = 0 TO 4095 ' test all locations
 DEBUG CrsrXY, 11, 2, DEC eeAddr, " "
 FOR test = 0 TO 3 ' use four patterns
 LOOKUP test, [$FF, $AA, $55, $00], outVal
 DEBUG CrsrXY, 11, 3, IHEX2 outVal
 i2cData = outVal
 GOSUB Write_Byte
 PAUSE 10
 GOSUB Read_Byte
 inVal = i2cData
 DEBUG CrsrXY, 11, 4, IHEX2 inVal, " "
 IF (inVal <> outVal) THEN Bad_Addr
 DEBUG "Pass "
 GOTO Next_Addr

Bad_Addr:
 DEBUG "Fail "

Next_Addr:
 PAUSE 50
 NEXT
 NEXT

 DEBUG CR, CR, "Done!"
 END

' --
' Subroutines
' --

' Byte to be written is passed in i2cData
' -- address passed in eeAddr

Experiment #32: I2C Communications

Page 200 • StampWorks Manual Version 1.2

Write_Byte:
 GOSUB I2C_Start ' send Start
 i2cWork = Wr2432 ' send write command
 GOSUB I2C_TX_Byte
 IF (i2cAck = NAK) THEN Write_Byte ' wait until not busy
 i2cWork = eeAddr / 256 ' send word address (1)
 GOSUB I2C_TX_Byte
 i2cWork = eeAddr // 256 ' send word address (0)
 GOSUB I2C_TX_Byte
 i2cWork = i2cData ' send data
 GOSUB I2C_TX_Byte
 GOSUB I2C_Stop
 RETURN

' Byte read is returned in i2cData
' -- address passed in eeAddr

Read_Byte:
 GOSUB I2C_Start ' send Start
 i2cWork = Wr2432 ' send write command
 GOSUB I2C_TX_Byte
 IF (i2cAck = NAK) THEN Write_Byte ' wait until not busy
 i2cWork = eeAddr / 256 ' send word address (1)
 GOSUB I2C_TX_Byte
 i2cWork = eeAddr // 256 ' send word address (0)
 GOSUB I2C_TX_Byte
 GOSUB I2C_Start
 i2cWork = Rd2432 ' send read command
 GOSUB I2C_TX_Byte
 GOSUB I2C_RX_Byte_Nak
 GOSUB I2C_Stop
 i2cData = i2cWork
 RETURN

' --
' Low Level I2C Subroutines
' --

' --- Start ---

I2C_Start: ' I2C start bit sequence
 INPUT i2cSDA
 INPUT SCL
 LOW i2cSDA ' SDA -> low while SCL high

Experiment #32: I2C Communications

StampWorks Manual Version 1.2 • Page 201

Clock_Hold:
 IF (Ins.LowBit(SCL) = 0) THEN Clock_Hold ' device ready?
 RETURN

' --- Transmit ---

I2C_TX_Byte:
 SHIFTOUT i2cSDA, SCL, MSBFIRST, [i2cWork\8] ' send byte to device
 SHIFTIN i2cSDA, SCL, MSBPRE, [i2cAck\1] ' get acknowledge bit
 RETURN

' --- Receive ---

I2C_RX_Byte_Nak:
 i2cAck = NAK ' no ACK = high
 GOTO I2C_RX

I2C_RX_Byte:
 i2cAck = ACK ' ACK = low

I2C_RX:
 SHIFTIN i2cSDA, SCL, MSBPRE, [i2cWork\8] ' get byte from device
 SHIFTOUT i2cSDA, SCL, LSBFIRST, [i2cAck\1] ' send ack or nak
 RETURN

' --- Stop ---

I2C_Stop: ' I2C stop bit sequence
 LOW i2cSDA
 INPUT SCL
 INPUT i2cSDA ' SDA --> high while SCL high
 RETURN

Behind the Scenes

The I2C-bus is a two-wire, synchronous bus that uses a Master-Slave relationship between
components. The Master initiates communication with the Slave and is responsible for generating
the clock signal. If requested to do so, the Slave can send data back to the Master. This means the
data pin (SDA) is bi-directional and the clock pin (SCL) is [usually] controlled only by the Master.

Experiment #32: I2C Communications

Page 202 • StampWorks Manual Version 1.2

The transfer of data between the Master and Slave works like this:

Master sending data

• Master initiates transfer
• Master addresses Slave
• Master sends data to Slave
• Master terminates transfer

Master receiving data

• Master initiates transfer
• Master addresses Slave
• Master receives data from Slave
• Master terminates transfer

The I2C specification actually allows for multiple Masters to exist on a common bus and provides a
method for arbitrating between them. That's a bit beyond the scope of what we need to do so we're
going to keep things simple. In our setup, the BS2 (or BS2e or BS2sx) will be the Master and
anything connected to it will be a Slave.

You'll notice in I2C schematics that the SDA and SCL lines are pulled up to Vdd (usually through
4.7K). The specification calls for device bus pins to be open drain. To put a high on either line, the
associated bus pin is made an input (floats) and the pull-up takes the line to Vdd. To make a line
low, the bus pin pulls it to Vss (ground).

This scheme is designed to protect devices on the bus from a short to ground. Since neither line is
driven high, there is no danger. We're going to cheat a bit. Instead of writing code to pull a line low
or release it (certainly possible – I did it), we're going to use SHIFTOUT and SHIFTIN to move data
back and forth. Using SHIFTOUT and SHIFTIN is faster and saves precious code space. If you're
concerned about a bus short damaging the Stamp's SDA or SCL pins during SHIFTOUT and
SHIFTIN, you can protect each of them with a 220 ohm resistor. I've been careful with my wiring
and code and haven't found this necessary.

Experiment #32: I2C Communications

StampWorks Manual Version 1.2 • Page 203

Low Level I2C Code

At its lowest level, the I2C Master needs to do four things:

• Generate a Start condition
• Transmit 8-bit data to the Slave
• Receive 8-bit data from Slave – with or without Acknowledge
• Generate Stop condition

A Start condition is defined as a HIGH to LOW transition on the SDA line while the SCL line is HIGH.
All transmissions begin with a Start condition. A Stop condition is defined as a LOW to HIGH
transition of the SDA line while the clock line is HIGH. A Stop condition terminates a transfer and can
be used to abort it as well.

There is a brief period when the Slave can take control of the SCL line. If a Slave is not ready to
transmit or receive data, it can hold the SCL line low after the Start condition. The Master can
monitor this to wait for the Slave to be ready. At the speed of the BS2, monitoring the clock line
usually isn't necessary but I've built the clock-hold test into the I2C_Start subroutine just to be safe.

Data is transferred eight bits at a time, sending the MSB first. After each byte, the I2C specification
calls for the receiving device to acknowledge the transmission by bringing the bus low for the ninth
clock. The exception to this is when the Master is the receiver and is receiving the final byte from
the Slave. In this case, there is no Acknowledge bit sent from Master to Slave.

Sending and receiving data from a specific slave always requires a Start condition, sending the Slave
address and finally, the Stop condition. What happens between the Slave address and the Stop are
dependent on the device and what we're doing.

What you'll need to do is get the data sheet for the I2C device you want to connect to. I have found,
without exception, that data sheets for I2C-compatible parts have very clear protocol definitions –
usually in graphic form – that makes implementing our low-level I2C routines very simple.

The experiment uses the low-level I2C routines to implement the Write_Byte and Read_Byte
routines. The sequence for these routines was lifted right from the 24LC32 data sheet. Notice that
each routine begins with an I2C Start condition and is terminated with the Stop condition. The code
in between sends the device command/type code, the address to deal with and then actually deals
with (writes or reads) the data. While this takes a few lines of code, it is actually very
straightforward.

Experiment #32: I2C Communications

Page 204 • StampWorks Manual Version 1.2

Most I2C routines follow a very similar structure; varying only in the internal address and for a few
devices, the way the device code is transmitted (there are a few devices that carry an address setting
in the device code byte).

Challenge

From the hundreds of I2C devices available, pick one that will be most useful for your projects and
write the high-level code necessary to communicate with it.

Striking Out On Your Own

StampWorks Manual Version 1.2 • Page 205

Striking Out on Your Own

Congratulations, you’re a BASIC Stamp programmer! So what’s next? Well, that’s up to you. Many
new programmers get stuck when it comes to developing their own projects. Don’t worry, this is
natural – and there are ways out of being stuck. The following tips will help you succeed in moving
your ideas to reality.

Plan Your Work, Work Your Plan

You’ve heard it a million times: plan, plan, and plan. Nothing gets a programmer into more trouble
than bad or inadequate planning. This is particularly true with the BASIC Stamp as resources are so
limited. Most of the programs we’ve fixed were “broken” due to bad planning and poor formatting
which lead to errors.

Talk It Out

Talk yourself through the program. Don’t just think it through, talk it through. Talk to yourself–out
loud–as if you were explaining the operation of the program to a fellow programmer. Often, just
hearing our own voice is what makes the difference. Better yet, talk it out as if the person you’re
talking to isn’t a programmer. This will force you to explain details. Many times we take things for
granted when we’re talking to ourselves or others of similar ability.

Write It Out

Design the details of your program on a white (dry erase) board before you sit down at your
computer. And use a lot of colors. You’ll find working through a design visually will offer new insights,
and the use of this medium allows you to write code snippets within your functional diagrams.

Design With “Sticky Notes”

Get out a pad of small “sticky notes”. Write module names or concise code fragments on individual
notes and then stick them up on the wall. Now stand back and take a look. Then move them around.
Add notes, take some away; just do what feels right to you. This exercise works particularly well with
groups. How do you know when you’re done? When the sticky notes stop moving! It’s a good idea to
record the final outcome before starting your editor. Another tip: this trick works even better when
combined with trick #2. You can draw lines between and around notes to indicate program flow or
logical groupings. If it’s not quite right, just erase the lines or move some notes. Try this trick; it
really does work.

Striking Out On Your Own

Page 206 • StampWorks Manual Version 1.2

Going Beyond The Box

By now, your appetite for BASIC Stamp projects has probably grown well beyond what you ever
expected. So where do you turn now? Don’t worry, there are many BASIC Stamp and related
resources available, both in print and on the Internet. Here’s a list to get you started:

Books & Magazines

• Microcontroller Application Cookbook By Matt Gilliland
• Microcontroller Projects with BASIC Stamps By Al Williams
• Programming and Customizing the BASIC Stamp Computer By Scott Edwards
• BASIC Stamp By Claus Kühnel and Klaus Zahnert
• Getting Started In Electronics By Forrest Mims
• Engineer’s Notebook By Forrest Mims
• Nuts & Volts Magazine “Stamp Applications” column

Internet Sites

www.parallaxinc.com Parallax main site
www.stampsinclass.com Parallax educational site
www.al-williams.com/awce/index.htm Al Williams web site
www.seetron.com Scott Edwards Electronics web site
www.hth.com/losa List of Stamp Applications – great idea source
www.emesystems.com/BS2index.htm Tracy Allen’s Stamp resources – very technical

Appendix A: BASIC Stamp II Manual Version 2.0c

StampWorks Manual Version 1.2 • Page 207

Appendix A:
BASIC Stamp II Manual Version 2.0c

Pages 198-344 of the BASIC Stamp Manual are included in this appendix. The entire manual (and
future updates) is available for purchase or download from www.parallaxinc.com.

