Experiments and BASIC Stamp Source Code

PARALLAX 7

Warranty

Parallax warrants its products against defects in materials and workmanship for a period of 90 days. If you discover a defect, Parallax will, at its
option, repair, replace, or refund the purchase price. Simply call for a Return Merchandise Authorization (RMA) number, write the number on the
outside of the box and send it back to Parallax. Please include your name, telephone number, shipping address, and a description of the
problem. We will return your product, or its replacement, using the same shipping method used to ship the product to Parallax.

14-Day Money Back Guarantee

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full refund. Parallax will
refund the purchase price of the product, excluding shipping / handling costs. This does not apply if the product has been altered or damaged.

Copyrights and Trademarks

This documentation is copyright 2000-2001 by Parallax, Inc. BASIC Stamp is a registered trademark of Parallax, Inc. If you decided to use the
name BASIC Stamp on your web page or in printed material, you must state that "BASIC Stamp is a registered trademark of Parallax, Inc." Other
brand and product names are trademarks or registered trademarks of their respective holders.

Disclaimer of Liability

Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under any legal
theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, and any costs or recovering,
reprogramming, or reproducing any data stored in or used with Parallax products. Parallax is also not responsible for any personal damage,
including that to life and health, resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no
matter how life-threatening it may be.

Internet Access

We maintain internet systems for your use. These may be used to obtain software, communicate with members of Parallax, and communicate
with other customers. Access information is shown below:

E-mail: info@parallaxinc.com
Web: www.parallaxinc.com and www.stampsinclass.com

Internet BASIC Stamp Discussion List

We maintain two e-mail discussion lists for people interested in BASIC Stamps (subscribe at www.parallaxinc.com under the technical support
button). The BASIC Stamp list server includes engineers, hobbyists, and enthusiasts. The list works like this: lots of people subscribe to the list,
and then all questions and answers to the list are distributed to all subscribers. It's a fun, fast, and free way to discuss BASIC Stamp issues and
get answers to technical questions. This list generates about 40 messages per day.

The Stamps in Class list is for students and educators who wish to share educational ideas. To subscribe to this list go to
www.stampsinclass.com and look for the E-groups list. This list generates about 5 messages per day.

Table of Contents

StampWarks)

Table of Contents

o = - T ol PP 3
g o [T a0 o PP PTPPPPP 5
Getting the Most from your SEampWOrks Lab.......ccuueuiiiiiiiiiiiiiiies e e eeees 5
Three Steps to Success With SEaMPWOIKSiiuiiiiii e 5

Preparing your StampWorks Lab.................cooii i 7
Contents Of this Kil......cuuuiiiiiiii e e e s e r e s e eaa e e e e rareaaeaaes 7
Preparing the Breadboardoiiiiiiiiiiii i 8

Programming ESSentials ... 13
Contents of @ WOrKing Program........ccuiiiiiiiiiii ittt s e s s e e e ea s e aa s e nn s e enanee 13
Branching — Redirecting the FIow of @ Program.........ccciiiiiiiiiiniiiin s ee e eaas 14
Looping — Running Code Again and AGaiNcooooeiiiimiiae e eeeceere e e e e s e e eee e e e e e e e e en e s 15
Subroutines — Reusable Code that Saves Program SpPace.......ccoieuviiiiiiiiiiiiiie s eaas 17
The Elements Of PBASIC SEYIE....cuuiiiiiiiii it e s e s e s e ea s e ea e eaa e eaan 18

TIME 0 EXPEIFIMENT ... e e e e e e r e e 23
Learn the Programming CONCEPES . ..uuiiruiiiiiiiiiii e r e e s a e e e eaaes 23
2T U] Fa 1o IR TSI o (o) 1= =N 23
What t0 d0 BEIWEEN PrOJECES iiiie ettt e e e e e e e e e e e e e e e s e e een e e e aeeennens 23
Experiment #1: FIash @n LED!.......ccuu oo e e e e e 25
Experiment #2: Flash an LED (VEISION 2)...uuuiiuiiiiii ittt es e ea s e s e s e e e 29
Experiment #3: Display a Counter With LEDS..........coiiiiiiiiiieiriie e sserrs s srrs s rrs s er e 31
Experiment #4: Science Fiction LED DiSPIaYcovieeeiriiuiiieieeeeeeieise e ee e e e s 35
Experiment #5: LED Graph (DOt OF Bar)........iiiuiiiiiiiiii it ee e ea e e 37
Experiment #6: A SIMPIE GAME ..uuiiiiiiiiieiie e s rr s e s s e e s e e e e s e e e s e e rr e e erean 43
Experiment #7: A Lighting CONtroller......coeeveeeei oo 49

Building Circuits On YOUF OWN..........oooiuiiiiiiiiiieirn e rrr e s s s s e s s e rnn s s srsn s s srrnnsssrsnnnss 55

Using 7-Segment Displaysccoiiiiiiiii i 57
Experiment #8: A Single-Digit COUNTEN......ccuui i e eaaas 59
Experiment #9: A DIigital Die....ccuuuuuioeiiieeieieee e e e e e e e e e e e e e s 63
Experiment #10: LED CIOCK DIiSPlaYceeeeeeeriuiieeiieeeeeeeies e e e eeeeeers s s e e e e e eera e e s e e e e eennnnn e s 67

USING CHAracCter LCDS..........couuiiiiiiiiic ettt st e e e et s e e s s e s e e e s e e s e ea s e eaa e e eaaaes 73

StampWorks Manual Version 1.2 e Page 1

Table of Contents

Experiment #11: A BasiC LCD DemoNStrationcccoviiiiiiiiiiiiiiien s ss s es s s e e s sn s en s en s enas 75
Experiment #12: Creating Custom LCD Characterscooceeeumiiiniieeeieeeiee e e e e eeeee e e e eeeeees 81
Experiment #13: Reading the LCD RAM.......cooiiiiiiiiien e e eee s e s e e e e e rnnn e e e e eeeeees 87
Experiment #14: Magic 8-Ball GAmME.......c..iiiiiiiiiiiici i 93
MOVING FOFWAKA ... e s e e e e e e e e e e r e r e e e e e e e e nernn s 99
Experiment #15: Debouncing Multiple INPULScoiiuiiiiiii e 101
Experiment #16: Counting EVENEScvuiiniii i 105
Experiment #17: FrequenCy MeasUreMENTcvuiieerirrsiernserrsserssernssrnssrnsssrssernsssnnsssnnnss 109
Experiment #18: Advanced Frequency Measurements.cceviivviiiniiiiin e ee e 113
Experiment #19: A Light-Controlled Theremin........cccoi i e 117
Experiment #20: SOUNd EffeCtS.......ciiiiiiiiiiiiiiin e rrr s 121
Experiment #21: Analog Input With PULSINccouuueiiiiiiii e e e e e e eeeeees 129
Experiment #22: Analog Output With PWM ... e 133
Experiment #23: EXpanding OULPULSccuiiiiiiiiiiiiiie it er s e e e e e eaa e e e s e ena s 137
Experiment #23: EXpanding OUEPUESoooiiiiiiiiiiiai e eeeeeeies e eeereess e e e e e e e e e e e e e eennnas 141
Experiment #24: EXpanding INPULScouiiiiiiiiiiie et r s e a e e e rna e 145
Experiment #24: EXpanding INPULS ..ot r e e s e e e e e s e e e eaa s 149
Experiment #25: Hobby Servo CoONtrol..........ccuuiiiiiiiiiiiiciis e er s s 153
Experiment #26: Stepper Motor CONEIOl.......cceiiiiiiei e e e e e e e enenas 157
Experiment #27: Voltage MeasUremMeENTS......c.ovi it e e s aa s 163
Experiment #28: Temperature MeasUrEmMENTcoceiiiriiirnireirre e sern e s ern e e e e s eeanss 167
Experiment #29: Advanced Seven-Segment MUltipleXing..........covviiiieieiiiiiieie e 171
Experiment #30: Using @ Real-Time ClOCK.........cuuiiiiiii it 179
Experiment #31: Serial CommMUNICAtIONS......ccuiiiiuiiiiiiiiiiin e e aaaas 187
Experiment #32: T2C COMMUNICATIONS ..veevveeviieeireeireesteseesseesreestesesssessbessssssssssessresssssnssssessses 197
Striking QUL ON YOUF OWNooiiiiiiiiccin s e s e s s s r e s e rnn e e e e rn e e e rrnnn s 205
Appendix A: BASIC Stamp II Manual Version 2.0C.............ccoooiiiiiiiiiiiniineeeeeeeeeenn e e eeeeees 207

Page 2 e StampWorks Manual Version 1.2

Preface

Stamp W2 Preface

Dear Friends:

There are probably as many ways to learn a new subject or skill as there are students and yet, most
will agree that /earning by doing produces the longest lasting results. And, quite frankly, learning by
doing is almost always the most satisfying way to learn; it involves more of the senses. That's what
this text and the StampWorks kit is all about: learning to program the BASIC Stamp by actually
writing programs for it. The theory sections are short and concise. You'll learn programming theory
by putting it into practice. There's not a lot of hand holding here; there’'s work — fun work that will
teach you about microcontroller programming with the Parallax BASIC Stamp.

Why take up the challenge? Why learn to write programs for the BASIC Stamp microcontroller? The
answer is simple, if not obvious: microcontrollers are everywhere. They're in our television sets, our
microwave ovens and our sprinkler controllers — even our cars. The fact is that most new cars today
have ten or more microcontrollers managing everything from the engine, the interior climate, wheel
spin (traction control), the braking system (anti-lock braking) and many other functions. In short,
today’s cars are safer and more comfortable due, in large part, to the use of microcontrollers.

With microcontrollers we can build “smart” circuits and devices. In the past, we would have to
change wiring or components in a circuit to modify or create a new behavior. The advantage of using
a microcontroller over other approaches is that changing its program can modify the behavior of our
circuit or device. The advantage of using the BASIC Stamp is that writing and modifying a program is
very easy and the StampWorks kit will show you just how easy it can be.

Have fun with these projects and think about how you could apply the concepts while building each
one. I appreciate your feedback anytime by e-mail to jwilliams@parallaxinc.com.

e Wiltins:

StampWorks Manual Version 1.2 e Page 3

Introduction

NERIAAEIEE Introduction

Getting the Most from Your StampWorks Lab

This book is divided into two major sections: the StampWorks experiments and the BASIC Stamp II
manual. Throughout the use of this course, you will be moving between the two sections frequently
as you work with the experiments. Additional reference materials are available from download on the
StampWorks page at www.parallaxinc.com, including datasheets, updates and technical details
released after this publication.

Three Steps to Success with StampWorks:
1. Read Section 1 of the BASIC Stamp II manual. This section will introduce you to the BASIC

Stamp II and guide you through the installation of the programming software. Another
helpful resource is Robotics chapter 1 from www.stampsinclass.com.

2. Read “Prepare your StampWorks Lab for Experiments,” the next section of this manual. This
section walks you through the simple steps of preparing the experiment board for the
projects that follow.

3. Work your way through the experiments, referring to the BASIC Stamp Manual syntax guide
as needed. This is the fun part — working with the Stamp by building simple circuits and
writing code.

By the time you've worked your way through all the experiments you'll be ready to develop your own
Stamp projects, from the very simple to the moderately complex. The key here is to make sure you
understand everything about a particular experiment before moving on to the next.

One last reminder: Have fun!

StampWorks Manual Version 1.2 e Page 5

Preparing your StampWorks Lab

S’camp\/\faﬂ-rks Preparing Your StampWorks Lab

Before moving into the experiments, you need to take inventory of your kit and prepare your
StampWorks lab. Once this is done, you'll be able to build a wide variety of Stamp-controlled circuits
with it.

The StampWorks kit includes the following items from Parallax:

Stock Code# Description Quantity
28135 NX-1000 board and 2x16 LCD 1
750-00007 12V 1A wall pack power supply 1
BS2-IC BASIC Stamp II module 1
800-00003 Serial programming cable 1
27220 StampWorks Manual 1
27000 Parallax CD-ROM 1
150-01020 1K ohm resistor, V4 watt, 5% 4
150-01030 10K ohm resistor, ¥4 watt, 5% 8
150-02210 220 ohm resistor, ¥4 watt, 5% 3
150-04720 470 ohm resistor, V4 watt, 5% 1
150-04720 4.7 K resistor, ¥4 watt, 5% 2
200-01040 0.1 uF capacitor 4
201-01061 10 uF capacitor 1
201-03080 3300 uF capacitor 1
251-03230 32.768 kHz crystal 1
350-00009 Photoresistor 2
602-00009 74HC595 2
602-00010 74HC165 2
602-00015 LM358 dual op-amp 1
603-00001 MAX2719 LED display driver 1
604-00002 DS1620 digital thermometer 1
604-00005 DS1302 timekeeping chip 1
604-00009 555 timer 1
604-00020 24LC32 4K EEPROM 1
ADC0831 ADC0831 8-bit A/D converter 1
900-00001 Piezo Speaker 1
900-00005 Parallax standard servo 1
27964 12 VDC / 75 ohm stepper motor 1
451-00301 3-pin single row header 1
700-00050 22 gauge wire roll — red 1
700-00051 22 gauge wire roll — white 1
700-00052 22 gauge wire roll — black 1
28162 Digital multimeter 1
700-00065 6-piece tool set 1
700-00066 Wire cutter/stripper 1

StampWorks Manual Version 1.2 e Page 7

Preparing your StampWorks Lab

To setup the StampWorks for experiments that follow, you'll need these items:

e BASIC Stamp II module

e StampWorks (INEX-1000) lab board
e 12-volt wall transformer

e Programming cable

« Red and black hookup wire

e Wire cutter/strippers

Start by removing the BASIC Stamp II module from its protective foam and carefully inserting it into
the StampWorks socket. You'll notice that the BASIC Stamp II module and the StampWorks lab board
socket are marked with semi-circle alignment guides. The BASIC Stamp II module should be inserted
into the socket so that the alignment guides match.

OO0O0000000000

gl =
Di‘i!m

mininininininininininin|

00000000 OOO0

Use the programming cable to connect the StampWorks lab board to your PC. It is best to select a
serial (com) port that is not already in use. If, however, you're forced to unplug another device, for
example, a PDA or electronic organizer from your computer, make sure that you also disable its
communication software before attempting to program your BASIC Stamp. If you haven't installed
the Stamp programming software, refer to Section 1 of the Stamp II programming manual for
instructions.

Ensure that the StampWorks lab board power switch is set to OFF. Connect the 2.1 mm power plug
to the DC INPUT jack. Plug the 12-volt wall transformer into a suitable (120 VAC) outlet.

On the center portion of the breadboard is a solderless breadboard where you will build circuits that
are not integral to the StampWorks lab board itself (a variety of parts are included in the
StampWorks kit). It's important to understand how this breadboard works. With a little bit of
preparation, it will be even easier to use with the experiments that follow.

Page 8 e StampWorks Manual Version 1.2

Preparing your StampWorks Lab

The innermost portion of the breadboard is where we will connect our components. This section of
the breadboard consists of several columns of sockets (there are numbers printed along the top for
reference). For each column there are two sets of rows. The rows are labeled A through E and F
through J, respectively. For any column, sockets A through E are electrically connected. The same
holds true for rows F through J.

Above and below the main section of breadboard are two horizontal rows of sockets, each divided in
the middle. These horizontal rows (often called “rails” or “buses”) will be used to carry +5 volts
(Vdd) and Ground (Vss). Our preparation of the breadboard involves connecting the rails so that
they run from end-to-end, connecting the top and bottom rails together and, finally, connecting the
rails to Vdd and Vss. Here’s what the breadboard looks like on the outside:

b o4s 5 B 5 B B 534 59 B

1 5 10 15 20 25 30 35 40 45 50 55 60

moow>
moowr

«—I®m
——I®m

1 5 10 15 20 25 30 35 40 45 50 55 60

HH B B B 6 5 B B B B

If we X-Rayed the breadboard, we would see the internal connections and the breaks in the Vdd and
Vss rails that need to be connected. Here’s a view of the breadboard’s internal connections:

StampWorks Manual Version 1.2 e Page 9

Preparing your StampWorks Lab

Start by setting your wire stripper for 22 (0.34 mm?) gauge. Take the spool of black wire and strip a
Ya-inch (6 mm) length of insulation from the end of the wire. With your needle-nose pliers, carefully
bend the bare wire 90 degrees so that it looks like this:

s |
0.25 inch I

I

Now push the bare wire into the topmost (ground) rail, into the socket that is just above breadboard
column 29 (this socket is just left of the middle of the breadboard, near the top). Hold the wire so
that it extends to the right. Mark the insulation by lightly pinching it with the diagonal cutters at the
socket above column 32. Be careful not to cut the wire.

(6 mm)

Remove the wire from the breadboard and cut it about Y-inch (6 mm) beyond the mark you just
made. With your wire strippers, remove the insulation at the mark. Now bend the second bare end
90 degrees so that the wire forms a squared “U” shape with the insulation in the middle.

[

If you've measured and cut carefully, this “U” shaped wire will plug comfortably into the ground rail
at sockets 29 and 32. This will create a single ground rail. Repeat this process with black wire for
the bottom-most rail. Then, connect the two rails together using the same process at column 60
(right-most sockets on each rail).

With the red wire, connect the top and bottom inside rail halves together. These rails will carry +5
volts, or Vdd. Connect the Vdd rails together at column 59.

Now take a 12-inch (4 cm) section of black wire and a 12-inch (4 cm) section of red wire and strip
Ya-inch (6 mm) insulation from the ends of both. Bend each wire into a rounded “U” shape. These
wires are not designed to lie flat like the other connections, making them easy to remove from the
StampWorks lab board if necessary.

Page 10 e StampWorks Manual Version 1.2

Preparing your StampWorks Lab

Carefully plug one end of the red wire into any of the terminals sockets of the +5V block (near the
RESET switch) and the other end into the Vdd (+5) rail at column 1. Then, plug one end of the black
wire into any of the sockets of the GND block and other end into the ground rail at column 19. BE
VERY CAREFUL with these last two connections. If the Vdd and Vss rails get connected together,
damage will occur when power is applied to the StampWorks lab board. When completed, your
StampWorks breadboard will look like this:

moow>
moow>

=IO
C—TOm

40 45 50 55

B B HHH

EeHH B B HHH

Move the StampWorks lab board power switch to ON. The green ON LED (green) should illuminate. If
it doesn’t, make sure that wall transformer is plugged into a live socket and that there are no wiring
errors with your setup.

Start the BASIC Stamp II software editor and enter the following lines of code:

{$STAMP BS2}
DEBUG "The StanpWorks |lab is ready!"”

Now run the program. If all went well, the program will be downloaded to the Stamp and a DEBUG
window will appear on screen.

StampWorks Manual Version 1.2 e Page 11

Preparing your StampWorks Lab

/ Debug Terminal #1
Com Port: Baud R ate: Parity:
[com1 Bl e B Hone E
Data Bits: Flaw Contral: @ T% [~ DTR [~ RTS
2 = Jof 2| @mx @SR @ cis

=l
The E2tampWorks lab is ready! u
N

[EAEtLTE.. | kacro Feys. .. FPauze | Cloze |

If an error occurs, check the following items:

e Is the BASIC Stamp II plugged into the NX-1000 board correctly?

« Is the StampWorks lab board power switch set to ON? Is the green ON LED lit?

e Is the programming cable connected between the PC and the StampWorks lab board?
« Have you (manually) selected the wrong PC com port?

« Is the PC com port being used by another program?

When the DEBUG window appears and tells you that the StampWorks lab is ready, it's time to talk
about Stamp programming.

Connecting a Chip

There are two ways to draw a schematic. One way is considered
“chip-centric” in which I/O pins appear on the chip according to L
1

their physical location. StampWorks has drawn schematics for i jicator" denotes the 8
efficiency, meaning that I/O pins are placed to make the topof the chip {pin 1). |5 bs 7
schematic legible. 1/O pins on all chips are counted according to 1302

their indicator, starting with Pin 1 and counting in a counter- 3 6
clockwise direction. 4 5

Page 12 e StampWorks Manual Version 1.2

Programming Essentials

NERIAAEIEE Programming Essentials

Contents of a Working Program

In Section 1 of the BASIC Stamp II manual you were introduced to the BASIC Stamp, its architecture
and the concepts of variables and constants. In this section, we'll introduce the various elements of a
program: linear code, branching, loops and subroutines.

The examples in this discussion use pseudo-code to demonstrate and describe program structure.
Italics are used to indicate the sections of pseudo-code that require replacement with valid
programming statements in order to allow the example to compile and run correctly. You need not
enter any of the examples here as all of these concepts will be used in the experiments that follow.

People often think of computers and microcontrollers as “smart” devices and yet, they will do nothing
without a specific set of instructions. This set of instructions is called a program. It is our job to write
the program. Stamp programs are written in a programming language called PBASIC, a Parallax-
specific version of the BASIC (Beginners All-purpose Symbolic Instruction Code) programming
language. BASIC is very popular because of its simplicity and English-like syntax.

A working program can be as simple as a list of statements. Like this:

statenment 1
statenment 2
statenment 3
END

This is a very simple, yet valid program structure. What you'll find, however, is that most programs
do not run in a straight, linear fashion like the listing above. Program flow is often redirected with
branching, looping and subroutines, with short linear sections in between. The requirements for
program flow are determined by the goal of the program and the conditions under which the
program is running.

StampWorks Manual Version 1.2 e Page 13

Programming Essentials

Branching — Redirecting the Flow of a Program

A branching command is one that causes the flow of the program to change from its linear path. In
other words, when the program encounters a branching command, it will, in almost all cases, not be
running the next [linear] line of code. The program will usually go somewhere else. There are two
categories of branching commands: wunconditional and conditional. PBASIC has two commands, GOTO
and GOSUB that cause unconditional branching.

Here’s an example of an unconditional branch using GOTO:

Label :
statenent 1
statement 2
statement 3
GOTO Label

We call this an wnconditional branch because it always happens. GOTO redirects the program to
another location. The location is specified as part of the GOTO command and is called an address.
Remember that addresses start a line of code and are followed by a colon (:). You'll frequently see
GOrOat the end of the main body of code, forcing the program statements to run again.

Conditional branching will cause the program flow to change under a specific set of circumstances.
The simplest conditional branching is done with | F- THEN construct. The PBASIC | F- THEN construct
is different from other flavors of BASIC. In PBASIC, THEN is always followed by a valid program
address (other BASICs allow a variety of programming statements to follow THEN). If the condition
statement evaluates as TRUE, the program will branch to the address specified. Otherwise, it will
continue with the next line of code.

Take a look at this listing:

Start:
statenment 1
statenent 2
statenment 3
IF (condition) THEN Start

The statements will be run and then the condition is tested. If it evaluates as TRUE, the program will

branch back to the line called St ar t . If the condition evaluates as FALSE, the program will continue
at the line that follows the | F- THEN construct.

Page 14 e StampWorks Manual Version 1.2

Programming Essentials

As your requirements become more sophisticated, you'll find that you'll want your program to branch
to any number of locations based on a condition. One approach is to use multiple | F- THEN
constructs.

| F (condition_0) THEN Label _O
| F (condition_1) THEN Label _1
| F (condition_2) THEN Label _2

This approach is valid and does get used. Thankfully, PBASIC has a special command, BRANCH, that
allows a program to jump to any number of addresses based on the value of a variable. This is very
handy because the conditions we've referred to in the text are often checking the value of a control
variable. BRANCH is a little more complicated in its setup, but very powerful in that it can replace
multiple | F- THEN statements. BRANCH requires a control variable and a list of addresses

In the case of a single control variable, the previous listing can be replaced with one line of code:

BRANCH control Var, [Label 0, Label _1, Label 2]

When control Var is zero, the program will branch to Label 0, when control Var is one the
program will branch to Label _1 and so on.

Looping — Running Code Again and Again

Looping causes sections of the program to be repeated. Looping often uses unconditional and
conditional branching to create the various looping structures. Here’'s an example of wnconditional
looping:

Label :
statenment 1
stat ement 2
statenent 3
GOTO Label

By using GOTO the statements are unconditionally repeated, or looped. By using | F- THEN, we can
add a conditional statement to the loop. The next few examples are called conditional looping. The
loops will run under specific conditions. Conditional programming is what gives microcontrollers their
“smarts.”

StampWorks Manual Version 1.2 e Page 15

Programming Essentials

Label :
statement 1
st at ement 2
statenment 3
IF (condition) THEN Label

With this loop structure, statements will be run so long as the condition evaluates as TRUE. When the
condition is evaluated as FALSE, the program will continue at the line following the I F- THEN
statement. It's important to note that in the previous listing the statements will always run at least
once, even if the condition is FALSE.

To prevent this from taking place, you need to test the condition before running the statements. The
code can be written as follows so that the statements (1 — 3) will only run when the condition is
TRUE. When the condition evaluates as FALSE, the program continues at Label _2.

Label _1:
I F NOT (condition) THEN Label _2
statenent 1
statenent 2
statenent 3
GOTO Label _1

Label _2:
statement 4

The final example of conditional looping is the programmed loop using the FOR- NEXT construct.

FOR control Var = startVal TO endVal STEP stepSize
statement 1
statenment 2
st at enent 3

NEXT

The FOR- NEXT construct is used to cause a section of code to execute (loop) a specific number of
times. FOR- NEXT uses a control variable to determine the number of loops. The size of the variable
will determine the upper limit of loop iterations. For example, the upper limit when using a byte-sized
control variable would be 255.

The STEP option of FOR- NEXT is used when the loop needs to count increments other than one. If,
for example, the loop needed to count even numbers, the code would look something like this:

Page 16 e StampWorks Manual Version 1.2

Programming Essentials

FOR control Var = 2 TO 20 STEP 2
statenent 1
stat ement 2
statement 3

NEXT

Subroutines — Reusable Code that Saves Program Space

The final programming concept we'll discuss is the subroutine. A subroutine is a section of code that
can be called (run) from anywhere in the program. GOSUB is used to redirect the program to the
subroutine code. The subroutine is terminated with the RETURN command. RETURN causes the
program to jump back to the line of code that follows the calling GOSUB command.

Start:
GOSUB My Sub
PAUSE 1000
GOTO Start

My Sub:
statenment 1
statenent 2
statenent 3
RETURN

In this example, the code in the MySub is executed and then the program jumps back to the line
PAUSE 1000.

StampWorks Manual Version 1.2 e Page 17

Programming Essentials

The Elements of PBASIC Style

Like most versions of the BASIC programming language, PBASIC is very forgiving and the compiler
enforces no particular formatting style. So long as the source code is syntactically correct, it will
compile and download to the Stamp without trouble.

Why, then, would one suggest a specific style for PBASIC? Consider this: Over two million BASIC
Stamps have been sold and there are nearly 2500 members of the BASIC Stamp mailing list (on
Yahoo! Groups). This makes it highly likely that you'll be sharing your PBASIC code with someone, if
not co-developing a BASIC Stamp-oriented project. Writing code in an organized, predictable manner
will save you — and your potential colleagues — time; in analysis, in troubleshooting and especially
when you return to a project after a long break.

The style guidelines presented here are just that: guidelines. They have been developed from style
guidelines used by professional programmers using other high-level languages such as Java™,
C/C++ and Visual Basic®. Use these guidelines as is, or modify them to suit your needs. The key is
selecting a style the works well for you or your organization and sticking to it.
1. Do It Right The First Time
Many programmers, especially new ones, fall into the "I'll slug it out now and fix it later." trap.
Invariably, the "fix it later" part never seems to happen and sloppy code makes its way into
production projects. If you don't have time to do it right, when will you have time to do it again?

Start clean and you'll be less likely to introduce errors in your code. And if errors do pop up,
clean formatting will make them easier to find and fix.

2. Be Organized and Consistent
Using a blank program template will help you organize your programs and establish a consistent
presentation.

3. Use Meaningful Names
Be verbose when naming constants, variables and program labels. The compiler will allow names

up to 32 characters long. Using meaningful names will reduce the number of comments and
make your programs easier to read, debug and maintain.

Page 18 e StampWorks Manual Version 1.2

Programming Essentials

4. Naming Constants

Begin constant names with an uppercase letter and use mixed case, using uppercase letters at
the beginning of new words within the name:

Al ar mCode CON 25

5. Naming Variables

Begin variable names with a lowercase letter and use mixed case, using uppercase letters at the
beginning of new words within the name. Avoid the use of internal variable names (such as BO

or W1):

wat er Level VAR Word

6. Naming Program Labels

Begin program labels with an uppercase letter, used mixed case, separate words within the label
with an underscore character and begin new words with an uppercase letter. Labels should be
preceded by at least one blank line, begin in column 1 and be terminated with a colon (except
after GOTO and THEN where they appear at the end of the line and without a colon):

Print_String:
READ eeAddr, char
IF (char = 0) THEN Print_String_Exit
DEBUG char
eeAddr = eeAddr + 1
GOTO Print_String

Print_String Exit:
RETURN

StampWorks Manual Version 1.2 e Page 19

Programming Essentials

7. PBASIC Keywords

All PBASIC language keywords, including VAR, CON and serial/debugging format modifiers (DEC,
HEX, BIN) should be uppercase:

Mai n:
DEBUG "BASI C St anp", CR
END
8. Variable Types

Variable types should be be in mixed case and start with an uppercase letter:

st at us VAR Bi t
count er VAR Ni b
ovenTenp VAR Byt e
r cvVal ue VAR Wor d

9. Indent Nested Code

Nesting blocks of code improves readability and helps reduce the introduction of errors.
Indenting each level with two spaces is recommended to make the code readable without taking
up too much space:

Mai n:

..FOR outerLoop = 1 TO 10

....FOR innerLoop = 1 TO 10

...... DEBUG DEC out er Loop, TAB, DEC innerLoop, TAB
...... DEBUG DEC (out erLoop * innerLoop)

...... PAUSE 100

... . NEXT

. NEXT

Note: The dots are used to illustrate the level of nesting and are not a part of the code.

Page 20 e StampWorks Manual Version 1.2

Programming Essentials

10.

11.

Be Generous With Whitespace

Whitespace (spaces and blank lines) has no effect compiler or BASIC Stamp performance, so be
generous with it to make listings easier to read. As suggested in #6 above, allow at lease one
blank line before program labels (two blanks lines before a subroutine label is recommended).
Separate items in a parameter list with a space:

Mai n:
BRANCH t ask, [Update Mdotors, Scan IR, Cl ose Gipper]
GOTO Mai n

Updat e_Mbdt ors:
PULSQUT | eft Motor, |eft Speed
PULSQUT ri ght Mot or, ri ght Speed
PAUSE 20
Task = (task + 1) // NunTasks
GOTO Mai n

An exception to this guideline is with the bits parameter used with SHIFTIN and SHIFTOUT. In
this case, format without spaces:

SHI FTI N A2Ddat a, A2Dcl ock, MsSBPost, [result\9]

IF-THEN Conditions
Enclose IF-THEN condition statements in parenthesis:

Check_Tenp:
I F (i ndoor Tenp >= setPoint) THEN AC On

The StampWorks files (available for download fromwww.parallaxinc.com) include a blank
programming tempalate (Blank.BS2) that will help you get started writing organized code. It's up to
you to follow the rest of the guidelines above — or develop and use guidelines of your own.

StampWorks Manual Version 1.2 e Page 21

Time to Experiment

S’camp\/\/cf;?-rks Time to Experiment

Learn the Programming Concepts

What follows is a series of programming experiments that you can build and run with your
StampWorks lab. The purpose of these experiments is to teach programming concepts and the use of
external components with the BASIC Stamp. The experiments are focused and designed so that as
you gain experience, you can combine the individual concepts to produce sophisticated programs.

Building the Projects

This section of the manual is simple but important because you will learn important programming
lessons and construction techniques using your StampWorks lab. As you move through the rest of
the manual, construction details will not be included (you'll be experienced by then and can make
your own choices) and the discussion of the program will be less verbose, focusing specifically on
special techniques or external devices connected to the BASIC Stamp.

What to do Between Projects

The circuit from one project may not be electrically compatible with another and could, in some
cases, cause damage to the BASIC Stamp if the old program is run with the new circuit. For this
reason, a blank program should be downloaded to the Stamp before connecting the new circuit. This
will protect the Stamp by resetting the I/0 lines to inputs. Here’s a simple, two-line program that will
clear and reset the Stamp.

{ $STAMP BS2}
DEBUG " St anp cl ear. "

For convenience, save this program to a file called CLEAR.BS2.

StampWorks Manual Version 1.2 e Page 23

Experiment #1: Flash an LED

_ Y2y Experiment #1:
> amP Flash An LED

The purpose of this experiment is to flash an LED with the BASIC Stamp. Flashing LEDs are often
used as alarm indicators.

New PBASIC Elements/Commands:

+ CON

e H®&

« LOW

« PAUSE
« @OTO

Building The Circuit

All StampWorks experiments use a dashed line to show parts that are already on the NX-1000 board.
The LED is available on the “"LED MONITOR 16 CHANNELS" part of the board.

Since the StampWorks lab board has the LEDs built in, all you have to do is connect one to the BASIC
Stamp.

1. Start with a six-inch (15 cm) white wire. Strip Y4-inch (6 mm) of insulation from each end.

2. Plug one end into BASIC Stamp Port 0.
3. Plug the other end into LED Monitor Channel 0

StampWorks Manual Version 1.2 e Page 25

Experiment #1: Flash an LED

' File...... Ex01 - Blink.BS2

' Pur pose. .. LED Bli nker

' Aut hor. ... Parall ax

' E-mail.... stanptech@arall axinc.com
' Started. ..

' Updated... 01 MAY 2002

' [$STAWP BS2}

' Blinks an LED connected to PO

LEDpi n CON 0 ' LED connected to Pin O
' Constants
Del ayTi nme CON 500 ' delay tinme in mlliseconds

Mai n:
H GH LEDpi n ' turn LED on
PAUSE Del ayTi me ' pause for a bit
LOW LEDpi n " turn LED off
PAUSE Del ayTi ne ' pause while off
GOTO Mai n ' do it again
END

Page 26 e StampWorks Manual Version 1.2

Experiment #1: Flash an LED

Behind The Scenes

Each of the Stamp’s I/O pins has three bits associated with its control. A bit in the Dirs word
determines whether the pin is an input (bit = 0) or an output (bit = 1). If the pin is configured as an
output, the current state of the pin is stored in the associated bit in the Qut s word. If the pin is
configured as an input, the current pin value is taken from the associated bit in the | ns word.

H GH and LOwWactually perform two functions with one command: the selected pin is configured as
an output and the value is set in the Qut s word (1 for HI GH, 0 for LOW).

For example, this line of code:
H GH 0

performs the same function as:

1 ' make Pin 0 an out put
set Pin 0 high

Dir0
Qut 0

I
(I

StampWorks Manual Version 1.2 e Page 27

Experiment #2: Flash an LED (Version 2)

BERWENR] Experiment #2:
— Flash An LED (Version 2)

The purpose of this experiment is to flash an LED with the BASIC Stamp. The method in this
experiment adds flexibility to the LED control.

New PBASIC elements/commands to know:

* VAR

e Qut0 - CQut15
e Dir0O - Dri15
e Byte

e Bit0O - Bitl5

Building The Circuit.

Use the same circuit as in Experiment #1.

' File...... Ex02 - Bl ink2. BS2

' Purpose... LED Blinker - Version 2
Aut hor. ... Parall ax
E-mail.... stanptech@arall axinc.com
Started...

Updated... 01 MAY 2002

{ $STAMP BS2}

Bl i nks an LED connected to Pin 0. LED on-tine and off-tine can be set
i ndependent|y of each other.

StampWorks Manual Version 1.2 e Page 29

Experiment #2: Flash an LED (Version 2)

M/LED VAR Qut 0 LED connected to Pin O

' Constants

Del ayOn CON 1000 ' on-time tine in mlliseconds
Del ayOf f CON 250 " off-time in mlliseconds

On CON 1

Of CON 0

Initialization

Initialize:
Dir0 = % ' make LED pin an out put

Mai n:
M/LED = On
PAUSE Del ayOn ' pause for "on" tine
M/LED = O f
PAUSE Del ayOf f ' pause for "off" tine
GOTO Mai n ' do it again

END
Can you explain what’s going on?

Since MYLED is a bit-sized variable, Bit0 of cnt r will control it. It works like this: When cnt r is odd
(1, 3, 5, etc.), Bi t 0 will be set (1), causing the LED to light. When cntr is an even number, Bit0
will be clear (0), causing the LED to be off.

Page 30 e StampWorks Manual Version 1.2

Experiment #3: Display a Counter with LEDs

StampWearks Experiment #3:
Display a Counter with LEDs

The purpose of this experiment is to display a byte-sized value with LEDs. Multiple LEDs are
frequently used as complex status or value indicators.

New PBASIC elements/commands to know:
e QutL, QutH
e DrL, DrH
e FOR- NEXT

Building The Circuit.

These LEDs are denoted by the "LED MONITOR 16 CHANNELS” notation on the NX-1000 board.

B s e s s s s s i i s it s i

StampWorks Manual Version 1.2 e Page 31

Experiment #3: Display a Counter with LEDs

Since the StampWorks lab board has the LEDs built in, all you have to do is connect one to the BASIC
Stamp.

1. Start with eight, six-inch (15 cm) white wires. Strip Y4-inch (6 mm) of insulation from the
ends of each.

2. Plug one end of a wire into BASIC Stamp Port 0.

Plug the other end into LED Monitor Channel 0.

4. Repeat Steps 2 and 3 for LED Monitor Channels 1-7 (Stamp pins 1- 7) using more wire.

w

File...... Ex03 - LED Counter. BS2

Pur pose... Binary Counter

Aut hor. ... Parall ax

E-mail.... stanptech@arall axinc.com
Started. ..

Updated... 01 MAY 2002

{ $STAVP BS2}

' Displays a binary counter on Pins 0 - 7

" I/O Definitions

LEDs VAR Qut L LEDs on Pins 0 - 7
Const ant s
M nCount CON 0 ' counter start val ue
Max Count CON 255 ' counter end val ue
Del ayTi ne CON 100 ' delay tinme in mlliseconds

Page 32 e StampWorks Manual Version 1.2

Experiment #3: Display a Counter with LEDs

Initialization

Initialize:
DirL = 941111111 ' make pins 0 - 7 outputs

Pr ogr am Code

Mai n:
FOR counter = M nCount TO MaxCount ' loop through all count val ues
LEDs = counter ' show count on LEDs
PAUSE Del ayTi ne ' pause before next number
NEXT
GOTO Mai n ' do it again
END
Behind The Scenes

As explained in Experiment #1, the state of the BASIC Stamp’s output pins are stored in a memory
area called Quts (QutL is the lower byte of the Quts word). Since QutL is part of the BASIC
Stamp’s general-purpose (RAM) memory, values can be written to and read from it. In this case,
copying the value of our counter to Qut L (alias for LEDs) causes the value of the counter to be
displayed on the StampWorks LEDs.

Challenge

Modify the program to count backward.

StampWorks Manual Version 1.2 e Page 33

Experiment #4: Science Fiction LED Display

StamPW@'l’kS Experiment #4:
Science Fiction LED Display

The purpose of this experiment is to “ping-pong” across eight LEDs to create a Sci-Fi type display.
Circuits like this often are used in film and television props.

New PBASIC elements/commands to know:

e << (Shift Left operator)
e >> (Shift Right operator)
e |FTHEN

Building The Circuit

Use the same circuit as in Experiment #3.

' File...... Ex04 - Pi ng Pong. BS2

' Pur pose... Ping-Pong LED Di spl ay

' Aut hor. ... Parall ax

' E-mail.... stanptech@arall axinc.com
' Started. ..

Updated... 01 MAY 2002

{ $STAMP BS2}

LEDs VAR Qut L ' LEDs on Pins 0 - 7

StampWorks Manual Version 1.2 e Page 35

Experiment #4: Science Fiction LED Display

Initialize:
DirL = 941111111 ' make all pins outputs
LEDs = 990000001 ' start with one LED on (pin 0)

Go_For war d:
PAUSE Del ayTi ne ' show the LED
LEDs = LEDs << 1 ' shift lit LED to the left
IF (LEDs = 940000000) THEN Go_Reverse ' test for final position
GOTO CGoForward ' continue in this direction

Co_Rever se:

PAUSE Del ayTi ne ' show the LED
LEDs = LEDs >> 1 ' shift lit LED to the right
IF (LEDs = 9%90000001) THEN Go_Forward ' test for final position
GOTO GoRever se ' continue in this direction
END

Behind The Scenes

This project demonstrates the ability to directly manipulate the BASIC Stamp’s outputs. The program
initializes the LEDs to %00000001 (LED 0 is on) then uses the shift-left operator (<<) to move the lit
LED one position to the left. With binary numbers, shifting left by one is the same as multiplying by
two. Shifting right by one (>>) is the same as dividing by two.

Both major sections of the code use | F- THEN to test for the limits of the display, causing the
program to branch to the other section when a limit is reached.

Page 36 e StampWorks Manual Version 1.2

Experiment #5: LED Graph (Dot or Bar)

StampWearks Experiment #5:
LED Graph (Dot or Bar)

The purpose of this experiment is to create a configurable (dot or bar) LED graph. This type of graph
is very common on audio equipment, specifically for VU (volume) meters. The value for the graph in
the experiment will be taken from the position of a potentiometer.

New PBASIC elements/commands to know:

e Wird

+ RCTIME

e */ (Star-Slash operator)
e (GOSUB- RETURN

« DCD

Building The Circuit

Add this circuit to Experiment #4.

+5
01uF ==
g]
220 > !
P15 S |
Py ¢ |
0 i
.
VR-10K
Vss "=

StampWorks Manual Version 1.2 e Page 37

Experiment #5: LED Graph (Dot or Bar)

1. Using red wire (cut as required), connect the Vdd (+5) rail to socket A15.
2. Plug a 0.1 uF (104K) capacitor into sockets B14 and B15.
3. Plug a 220-ohm (RED-RED-BROWN) resistor into sockets C10 and C14.
4. Using white wire, connect socket A10 to BASIC Stamp Port 15.
5. Using white wire, connect socket E14 to the wiper of the 10K potentiometer
6. Using black wire, connect the Vss (ground) rail to the bottom terminal of the 10K
potentiometer.
' File...... Ex05 - LED G aph. BS2
' Pur pose... LED Bar G aph
' Aut hor. ... Parall ax
' E-mail.... stanptech@arall axinc.com
' Started...
Updat ed. . .

{ $STAVP BS2}

LEDs VAR Qut L ' LED out puts

Pot Pi n CON 15 ' pot wi per connects to pin 15
' Constants

Dot G af CON 0 ' define graph types

Bar G af CON 1

G aphMbde CON Bar G af ' define current graph node

Page 38 e StampWorks Manual Version 1.2

Experiment #5: LED Graph (Dot or Bar)

scale value to nake 0 .. 255

scal e for BS2sx
scl ae for BS2p

On CON 1

O f CON 0

Scal e CON $005F
Scal e CON $0028
Scal e CON $0027

' Vari abl es

rawal ue VAR Wor d

gr af Val ue VAR Byt e

bits VAR Byt e

newBar VAR Byt e

raw val ue from pot
graph val ue

hi ghest |ighted bit

wor kspace for bar graph

Initialize:
DirL = 9%1111111

Mai n:
Hl GH Pot Pi n
PAUSE 1
RCTI ME Pot Pin, 1, rawval ue

graf Val ue = rawal ue */ Scal e
GOSUB show_Gr aph

PAUSE 50

GOTO Mai n

END

di scharge cap

for 1 mllisecond
read the Pot
scale grafVval (0 - 255)
show it

do it again

Subr out i nes

StampWorks Manual Version 1.2 e Page 39

Experiment #5: LED Graph (Dot or Bar)

Show_G aph:
I F (GraphMbde = Bar Graf) THEN Show Bar ' junp to graph node code

Show_Dot :
LEDs = DCD (grafValue / 32) ' show dot val ue
RETURN

Show_Bar :
bits = DCD (grafValue / 32) ' get highest bit
newBar = 0

Bui | d_Bar:
IF (bits = 0) THEN Bar _Done ' all bar LEDs lit?
newBar = newBar << 1 ' 'no - shift left
newBar.Bit0 = On ‘" light |Iow end
bits = bits >> 1 ""mark bit lit
GOTO Bui | d_Bar ' continue

Bar _Done:
LEDs = newBar ' out put new | evel
RETURN

Behind The Scenes

After initializing the outputs, this program reads the 10K potentiometer (located on the StampWorks
lab board) with RCTI ME. Using DEBUG to display the raw value, it was determined that RCTI ME
returned values between zero (pot fully counter-clockwise) and 685 (pot turned fully clockwise).
Since gr af Val is a byte-sized variable, r awval must be scaled down to fit.

To determine the scaling multiplier, divide 255 (largest possible value for gr af vVal) by 685 (highest
value returned in r awval). The result is 0.372.

Dealing with fractional values within PBASIC's integer math system is made possible with the */
(star-slash) operator. The parameter for */ is a 16-bit (word) variable. The upper eight bits (high
byte) are multiplied as a whole value. The lower eight bits (low byte) are multiplied as a fractional
value.

To determine the value of the fractional byte, multiply the desired decimal fractional value by 255
and convert to hex.

Page 40 e StampWorks Manual Version 1.2

Experiment #5: LED Graph (Dot or Bar)

Example:
0.372 x 255 = 95 (or $5F)
Since the multiplier in the experiment is 0.372, the */ value is $005F.

The program uses the DCD operator to determine highest lighted bit value from gr af Val . With eight
LEDs in the graph, grafVval is divided by 32, forcing the result of DCD to output values from
%00000001 (DCD 0) to %10000000 (DCD 7).

In Dot mode, this is all that is required and a single LED is lit. In Bar Mode, the lower LEDs must be
filled in. This is accomplished by a loop. The control value for the loop is the variable, bi t s, which
also calculated using DCD. In this loop, bi t s will be tested for zero to exit, so each iteration through
the loop will decrement (decrease) this value.

If bi t s is greater than zero, the bar graph workspace variable, newBar, is shifted left and its bit 0 is
set. For example, if DCD returned %1000 in bi t s, here's how bi t s and newBar would be affected
through the loop:

bits newBar

1000 0001
0100 0011
0010 0111
0001 1111

0000 (done - exit loop and display value)
The purpose for the variable, newBar, is to prevent the LEDs from flashing with each update. This

allows the program to start with an “empty” graph and build to the current value. With this
technique, the program does not have to remember the value of the previous graph.

StampWorks Manual Version 1.2 e Page 41

Experiment #6: A Simple Game

S’camp\/\/@%rks Experiment #6:
A Simple Game

The purpose of this experiment is to create a simple, slot machine type game with the BASIC Stamp.

New PBASIC elements/commands to know:

+ RANDOM

e & (And operator)
« FREQOUT

e BUTTON

e LOCOKUP

Building The Circuit

I_o'lj

Note: Later versions of the StampWorks lab board come with a built-in audio amplifier. Attach an 8-
ohm speaker to the output of the amplifier to get the best sound from this project.

StampWorks Manual Version 1.2 e Page 43

Experiment #6: A Simple Game

You may wish to substitute the piezo speaker on the StampWorks lab board with the one in the kit,
which seems to have a higher volume.

1. Using white wires, connect BASIC Stamp Ports 0 — 5 to LEDs 0 — 5.
2. Using white wire, connect BASIC Stamp Port 6 to the + side of the Piezo speaker.
3. Using black wire, connect the — side of the Piezo speaker to ground.
4. Using a white wire connect BASIC Stamp Port 7 to Pushbutton DO.
' File...... Ex06 - Las Vegas. BS2
' Pur pose... Stanp Gane
' Aut hor. ... Parall ax
' E-mail.... stanptech@arall axinc.com
' Started...

Updated... 01 MAY 2002

{ $STAMP BS2}

LEDs VAR Qut L ' LED out puts

Speaker CON 6 ' speaker out put

Pl ayBt n CON 7 ' button input to play gane
' Vari abl es

randw VAR Wor d ' random nunber

pattern VAR Byt e " light pattern

t one VAR Wor d ' tone output

Page 44 e StampWorks Manual Version 1.2

Experiment #6: A Simple Game

swhat a
del ay
spi nl
spi n2

VAR
VAR
VAR
VAR

Byt e
Wor d
Byt e
Byt e

wor kspace variable for BUTTON
del ay while "spinning"

| oop counter

| oop counter

Initialize:
DirL = 990111111

Mai n:
GOSUB Get _Random
FREQOQUT Speaker, 35, t one

PAUSE 100

BUTTON Pl ayBtn, O,

GOTO Mai n

Spi n:
LEDs = 990111111

PAUSE 750

LEDs = 990000000

PAUSE 500
delay = 75

FOR spi nl

1 TO 25

GOSUB Get _Random
FREQOUT Speaker,
PAUSE del ay

del ay */ $0119

del ay =
NEXT

IF pattern = 990111111 THEN You_W n

FREQOUT Speaker, 10
LEDs = 990000000

PAUSE 1000
GOTO Mai n

You_W n:

FOR spi nl

1 TOS5

255, 10,

25, 425

00, 150

get a random nunber and tone
sound the tone

check for play

si mul at e machi ne reset

initialize del ay

spi n the wheel

get random nunber
wheel click

pause between clicks
multiply delay by 1.1

if all lit, you win
ot herwi se, groan...
cl ear LEDs

do it again

wi nni ng |ights/sound displ ay

StampWorks Manual Version 1.2 e Page 45

Experiment #6: A Simple Game

FOR spin2 = 0 TO 3
LOOKUP spi n2, [$00, $0C, $12,
LOOKUP spi n2, [665, 795, 995,
FREQOUT Speaker, 35, tone
PAUSE 65
NEXT
NEXT

LEDs
tone

$21],
1320],

LEDs = 90000000
PAUSE 1000
GOTO Mai n

cl ear LEDs
do it again

END

Get _Random

RANDOM r andW

tone = randW & $7FF
pattern = randW & 990111111
LEDs = pattern

get pseudo-random nunber
don't let tone go too high
mask out unused bits

show t he pattern

RETURN
Behind The Scenes

This program demonstrates how to put more randomness into the pseudo-random nature of the
RANDOM command. Adding a human element does it.

The program waits in a loop called Attenti on. The top of this loop calls Get _Randomto create a
pseudo-random value, a tone for the speaker and to put the new pattern on the LEDs. On returning
to Attention, the tone is played and the button is checked for a press. The program will loop
through At t ent i on until you press the button.

The BUTTON command is used to debounce the input. Here’s what gives the program its randomness:
the time variations between button presses. When the button is pressed, the LEDs are lit and cleared
to simulate the game resetting. Then, a FOR- NEXT loop is used to simulate the rolling action of a slot
machine. For each roll, a “click” sound is generated and the delay between clicks is modified to
simulate natural decay (slowing) of the wheel speed.

Page 46 e StampWorks Manual Version 1.2

Experiment #6: A Simple Game

If all six LEDs are lit after the last spin, the program branches to You_W n. This routine uses L OOKUP
to play a preset pattern of LEDs and tones before returning to the top of the program. If any of the
LEDs is not lit, a groan will be heard from the speaker and the game will restart.

Challenge

Modify the game so that less than six LEDs have to light to for a win.

StampWorks Manual Version 1.2 e Page 47

Experiment #7: A Lighting Controller

SfamPWﬂ}’kS Experiment #7:
A Lighting Controller

The purpose of this experiment is to create a small lighting controller, suitable for holiday trees and
outdoor decorations. The outputs of this circuit will be LEDs only (To control high-voltage lighting
take a look at Matt Gilliland’s Microcontroller Application Cookbook).

New PBASIC elements/commands to know:

 DATA

e MN

e // (Modul us operator)
BRANCH

Building The Circuit.

P7 T

StampWorks Manual Version 1.2 e Page 49

Experiment #7: A Lighting Controller

Using white wires, connect BASIC Stamp Ports 0-5 to LEDs 0- 5.

Using red wire, connect the Vdd (+5) rail to socket A15.

Plug a 0.1 uF (104K) capacitor into sockets B14 and B15.

Plug a 220-ohm (RED-RED-BROWN) resistor into sockets C10 and C14.

Using white wire, connect socket A10 to BASIC Stamp Port 6.

Using white wire, connect socket E14 to the top terminal of the 10K potentiometer.
Using black wire, connect the Vss (ground) rail to the wiper (middle terminal) of the 10K
potentiometer.

8. Using a white wire connect BASIC Stamp Port 7 to Pushbutton D7.

Nouhwhe=

File...... Ex07 - Light Show. BS2
Purpose... Sinple lighting controller
Aut hor. ... Parall ax
' E-mail.... stanptech@arall axinc.com
' Started...

' Updated... 01 MAY 2002

' [$STAWP BS2}

Sel ect CON 7 ' pattern sel ect input

Pot Pi n CON 6 ' speed control Pot input

Li ghts VAR Qut L " light control outputs

' Constants

Scal e CON $018A ' convert pot input to O - 1000

Page 50 e StampWorks Manual Version 1.2

Experiment #7: A Lighting Controller

Scal e CON $00A0 ' scale for BS2sx

Scal e CON $009E ' scale for BS2p

Vari abl es
del ay VAR Wor d ' pause tinme between patterns
bt nVar VAR Byt e ' workspace for BUTTON
node VAR Byt e ' sel ected node
of f set VAR Byt e ' offset into |ight patterns
randw VAR Wor d ' wor kspace for RANDOM
' EEPROM Dat a
SegA DATA %9©00001, 9%©00010, 9900100, 9901000, %©10000, %100000
SeqB DATA %4.00000, 9910000, %901000, %©00100, %®00010

DATA 2900001, 9900010, 9900100, 9901000, %®10000

SeqC DATA %900000, 9901100, 9910010, 9400001
SeqD DATA 2400100, 9910010, 9901001
SeqE DATA %0
AMax CON SeqB - SeqgA ' calculate length of sequence
BMax CON SeqC - SegB
Cax CON SegD - SeqC
Divax CON SeqE - SegD

Initialize:
DirL = 990111111 ' LED control |lines are outputs

Mai n:
H GH Pot Pi n ' discharge cap
PAUSE 1

StampWorks Manual Version 1.2 e Page 51

Experiment #7: A Lighting Controller

RCTI ME Pot Pin, 1, del ay ' read speed pot
delay = (delay */ Scale) MN 50 ' calculate delay (50 ns ~ 1 sec)
PAUSE del ay ' wait between patterns
Swi t ch_Check:
BUTTON Sel ect, 0, 255, 0, btnVar, 0, Show ' new node?
mode = mode + 1 // 5 ' yes, update node var
Show:
BRANCH node, [MbdeA, MdeB, MdeC, MdeD, MdeE]
GOTO Mai n

ModeA:
of fset = offset + 1 // AMax ' update offset (0 - 5)
READ (SeqA + offset), Lights ' output new |ight pattern
GOTO Mai n ' repeat

MbdeB:

offset = offset + 1 // BMax
READ (SeqB + offset), Lights
GOTO Mai n

ModeC:
of fset = offset + 1 // CWMax
READ (SeqC + offset), Lights
GOTO Mai n

ModeD:
offset = offset + 1 // DWvhx
READ (SeqD + of fset), Lights
GOTO Mai n

ModeE:
RANDOM r andW ' get random numnber

Lights = randW & %9©0111111 ‘" light random channel s
GOTO Mai n

Behind The Scenes

Overall, this program is simpler than it first appears. The main body of the program is a loop. Timing
through the main loop is controlled by the position of the potentiometer. RCTI ME is used to read the

Page 52 e StampWorks Manual Version 1.2

Experiment #7: A Lighting Controller

pot and during development the maximum pot reading was found to be 648. Multiplying the
maximum pot value by 1.54 (delay */ $018A) scales the maximum value to 1000 for a one-second
delay. The M N operator is used in the delay scaling calculation to ensure the shortest loop-timing
delay is 50 milliseconds.

The code at Swi t ch_Check looks to see if button D7 is pressed. If it is, the variable, node, is
incremented (increased by 1). The modulus (//) operator is used to keep node in the range of zero to
four. This works because the modulus operator returns the remainder after a division. Since any
number divided by itself will return a remainder of zero, using modulus in this manner causes node
to “wrap-around” from four to zero.

The final element of the main loop is called Show. This code uses BRANCH to call the code that will
output the light sequence specified by node. Modes A through D work similarly, retrieving light
sequences from the BASIC Stamp’s EEPROM (stored in DATA statements). Mode E outputs a random
light pattern.

Take a look at the code section labeled ModeA. The first thing that happens is that the variable,
of f set, is updated — again using the “wrap-around” technique with the modulus operator. The value
of of fset is added to the starting position of the specified light sequence and the current light
pattern is retrieved with READ. Notice that the DATA statements for each sequence are labeled
(SeqA, SeqB, etc.). Internally, each of these labels is converted to a constant value that is equal to
the starting address of the sequence. The length of each sequence is calculated with these
constants. By using this technique, light patterns can be updated (shortened or lengthened) without
having to modify the operational code called by Show. MdeE is very straightforward, using the
RANDOM function to output new pattern of lights with each pass through the main loop.

Challenge

Add a new lighting sequence. What sections of the program need to be modified to make this work?

StampWorks Manual Version 1.2 e Page 53

Building Circuits On Your Own

SERIAEIEE Building Circuits On Your Own

With the experience you gained in the previous section, you're ready to assemble the following
circuits without specific instruction. These projects are fairly simple and you'll find them electrically
similar to several of the projects that you've already built.

Proceed slowly and double-check your connections before applying power. You're well on your way
to designing your own Stamp-based projects and experiments.

Let's continue with 7-segment displays....

StampWorks Manual Version 1.2 e Page 55

Using 7-Segment Displays

SIERIAEIIE Using 7-Segment Displays

A 7-segment display is actually seven (eight counting the decimal point) standard LEDs that have
been packaged into a linear shape and arranged as a Figure-8 pattern. The LEDs in the group have a
common element (anode or cathode).

]
k.
c—Ppl—

\
e UL
E—Pp—e

\] | |

F—Ppp}—o
RGO gy .

IO G I Ry

Vss =

By lighting specific combinations of the LEDs in the package we can create digits and even a few
alpha characters (letters and symbols). Seven-segment LEDs are usually used in numeric displays.

The StampWorks lab has four, common-cathode seven-segment displays. The experiments in this
section will show you how to get the most from these versatile components.

StampWorks Manual Version 1.2 e Page 57

Experiment #8: A Single-Digit Counter

StampWearks Experiment #8:
A Single-Digit Counter

The purpose of this experiment is to demonstrate the use of seven-segment LED module by creating
a simple decimal counter.

New PBASIC elements/commands to know:
« Nb

Building The Circuit.

A S S S —

T
B | mmy ¢

P5 D—CP |

!

{ .

A {

P6 D—¢

DP | i

P7T D>—0 §

i

L I

DIGIT 1

StampWorks Manual Version 1.2 e Page 59

Experiment #8: A Single-Digit Counter

File...... Ex08 - SevenSegs. BS2

Pur pose... 7-Segnent Displ ay

Aut hor. ... Parallax

E-mail.... stanptech@arall axinc.com
Started. ..

' Updated... 01 MAY 2002

' {$STAWP BS2}

Segs VAR Cut L 7-segment LEDs
Const ant s

Bl ank CON %9©0000000 clears the display

' Vari abl es

count er VAR Ni b

' EEPROM Dat a

Page 60 e StampWorks Manual Version 1.2

Experiment #8: A Single-Digit Counter

Segnent s

DecDi g DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

. abcdef g
291111110
%90110000
291101101
991111001
290110011
291011011
%91011111
%91110000
%91111111
291111011

oo~NoUuh~hwNEO

Initialize:

DrL = 91111111

Mai n:

FOR counter = 0 TO 9

READ (DecDig + counter), Segs

PAUSE 1000
NEXT
GOTO Mai n

END

count
put 7-seg pattern on digit
show for about one second

' do it all again

StampWorks Manual Version 1.2 e Page 61

Experiment #8: A Single-Digit Counter

Behind The Scenes

This program is very similar to the light show program: a pattern is read from the EEPROM and
output to the LEDs. In this program, sending specific patterns to the seven-segment LED creates the
digits zero through nine.

Challenge

Update the program to create a single-digit HEX counter. Use the patterns below for the HEX digits.
— -— — —
L S I) N
NN I N N

Page 62 e StampWorks Manual Version 1.2

Experiment #9: A Digital Die

SJC SVVET] Experiment #9:
. P A Digital Die

The purpose of this experiment is create a digital die (one half of a pair of dice).
Building The Circuit.

Add this pushbutton to the circuit in Experiment #8.

I

I 45

i

I

! 10K

D7 |
P15

I

o

i

{ ; Vss
File...... Ex09 - Rol |l er.BS2
Purpose... Digital De
Aut hor. ... Parall ax
E-mail.... stanptech@arall axinc.com
Started...

Updated... 01 MAY 2002

{ $STAMP BS2}

Pr ogram Descri ption

Thi s program conbi nes a 7-segnment display and a pushbutton input to create
a single-digit digital die. Displays 1 to 6 when button is pressed.

StampWorks Manual Version 1.2 e Page 63

Experiment #9: A Digital Die

Rol | Bt n CON 15 ‘" roll button on Pin 15
Segs VAR Qut L ' 7-segnment LEDs
' Vari abl es
swhat a VAR Byt e ' data for BUTTON conmand
di eVal VAR Ni b ' new di e val ue
spi nPos VAR Ni b ' spinner position
doSpi n VAR Ni b ' spi nner update control
' EEPROM Dat a
' abcdef g
DecDi g DATA 991111110 "0
DATA 290110000 "1
DATA 991101101 2
DATA 291111001 '3
DATA %90110011 ' 4
DATA 291011011 "5
DATA 991011111 ' 6
DATA 291110000 7
DATA %91111111 '8
DATA %91111011 "9

Bug DATA 291000000 ' spinning bug
DATA %90100000
DATA %90010000
DATA %90001000
DATA %90000100
DATA %90000010

Page 64 e StampWorks Manual Version 1.2

Experiment #9: A Digital Die

Initialize:
DrL = 991111111

Mai n:
GOSUB Get _Di e
PAUSE 5
is the button pressed?

BUTTON Rol | Btn, 0, 255, 10, swbata, 1, Show Die

GOTO Mai n

Show Di e:
READ (DecDig + dieVal), Segs
PAUSE 3000
GOTO Mai n

END

Get _Die:
dievVal = (dieval // 6) + 1
READ (Bug + spinPos), segs
doSpin = (doSpin + 1) // 7
IF (doSpin > 0) THEN Get Di eX
spi nPos = spinPos + 1 // 6

Cet _DieX:
RETURN

Behind The Scenes

create output pins

updat e di e val ue

no

show t he die
- for 3 seconds
go again

limt =1to 6

show spi nner pattern
time to update spinner?
only if doSpin =0
updat e spi nner

This program borrows heavily from what we've already done and should be easy for you to
understand. What we've done here is added a bit of programming creativity to make a very simple

program visually interesting.

StampWorks Manual Version 1.2 e Page 65

Experiment #9: A Digital Die

There is one noteworthy point: the use of the variable, doSpi n. In order to create a random value,
the variable di eval is updated rapidly until the button is pressed. This rate of change, however, is
too fast to allow for a meaningful display of the rotating “bug.” The variable doSpi n, then, acts as a
delay timer, causing the LED “bug” position to be updated every seventh pass through the Get Di e
routine. This allows us to see it clearly and creates an inviting display.

Page 66 e StampWorks Manual Version 1.2

Experiment #10: LED Clock Display

SeR Wy Experiment #10:
LED Clock Display

The purpose of this experiment is create a simple clock display using four, seven-segment LED
modules.

New PBASIC elements/commands to know:

e CQutA QutB,QutC QutD
e DrADTIB, DrCDTrD
e In0 - INnl5

e DG

Building The Circuit

)

1

G !
PoD—Q
Fa

P1

P2

3

P3

|

|

|

|

I

|

|

|

|

— — §

|

I

= — — i
B I mmb o mml o |

P5 D—0 !
§

P6 [D>—0 s
E

I

|

|

!

P D0

|
b O Qe Q]
DIGIT 4 T DIGIT 3 DIGIT 2 DIGIT 1
P8

P15 CI—0 PULSE GENERATOR |

Lo e e o e e e e e e e e e e . e . e e . e o e e

StampWorks Manual Version 1.2 e Page 67

Experiment #10: LED Clock Display

' File...... Ex10 - d ock. BS2

' Purpose... Sinple software cl ock

' Aut hor. ... Parall ax

' E-mail.... stanptech@arall axinc.com
' Started...

' Updated... 01 MAY 2002

' {$STAWP BS2}

This programmonitors a 1 Hz input signal and uses it as the tinebase for
a software cl ock.

" I/O Definitions

Segs VAR Qut L ' segnents

Di gSel VAR QutC ' digit select

Tic VAR 1 n15 ' 1 Hz Pul se Generator input
' Constants

DecPoi nt CON 2940000000 ' decimal point bit

Bl ank CON %9©0000000 ' all segnents off

Di g0 CON %4111 ' digit select control
Di g1 CON %4110

Di g2 CON %4101

Di g3 CON %4011

Di g4 CON %111

| sLow CON 0 " Tic input is |ow

I sHi gh CON 1 " Tic input is high

Page 68 e StampWorks Manual Version 1.2

Experiment #10: LED Clock Display

seconds
formatted tine
current display digit

" Vari abl es

secs VAR

tinme VAR

digit VAR

' EEPROM Dat a

DecDi g DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

991111110
990110000
991101101
991111001
990110011
991011011
291011111
991110000
291111111
991111011

©Co~NoOOUTh~,WNEO

Initialize:

DirL = %
DrC =%
Di gSel =

1111111
111
Di g0

make segnents out puts
make digit selects outputs
all digits off

Mai n:
GOSUB Show _Ti ne
I sHi gh) THEN I nc_Sec

IF (Tic =
GOTO Mai n

show current digit
new second?
do it again

StampWorks Manual Version 1.2 e Page 69

Experiment #10: LED Clock Display

I nc_Sec:

secs = (secs + 1) // 3600 ' updat e seconds counter
Wi ti ng:

GOSUB Show_Ti ne ' show current digit

IF (Tic = IsLow) THEN Main " if last tic gone, go back

addi ti onal code could go here
GOTO Wi ting ' do tic check again

END

Subr out i nes

Show_Ti ne:
time = (secs / 60) * 100 ' get mnutes, put in hundreds
time =time + (secs // 60) ' get seconds, put in 10s & 1s
Segs = Bl ank ' clear display

enable digit
LOOKUP digit, [Digl, Dig2, Dig3, Dig4], digSel
READ (DechDig + (tinme DIG digit)), Segs '
IF (digit <> 2) THEN Ski p_DP

put segnment pattern in digit

Segs = Segs + DecPoi nt " illum nate deci mal point
Ski p_DP:

PAUSE 1 ' show it

digit = (digit + 1) // 4 ' get next digit

RETURN

Behind The Scenes

The first two projects with seven-segment displays used only one digit. This project uses all four. A
new problem arises; since the segment (anode) lines of the four displays are tied together, we can
only show one at a time. This is accomplished by outputting the segment pattern then enabling the
desired digit (by making its cathode low).

The goal of this program though, is to create a clock display, which means we want to see all four

digits at the same time. While we can't actually have all four running at once, we can trick the human
eye into thinking so.

Page 70 e StampWorks Manual Version 1.2

Experiment #10: LED Clock Display

The human eye has a property known as Persistence Of Vision (POV), which causes it to hold an
image briefly. The brighter the image, the longer it holds in our eyes. POV is what causes us to see a
bright spot in our vision after a friend snaps a flash photo. We can use POV to our advantage by
rapidly cycling through each of the four digits, displaying the proper segments for that digit for a
short period. If the cycle is fast enough, the POV of our eyes will cause the all four digits to appear to
be lit at the same time. This process is called multiplexing.

Multiplexing is the process of sharing data lines; in this case, the segment lines to the displays are
being shared. If we didn't multiplex, 28 output lines would be required to control four seven-segment
displays. That's 12 more lines than are available on the BASIC Stamp.

The real work in this program happens in the subroutine called Show Ti me. Its purpose is to time-
format (MMSS) the seconds counter and update the current digit. Since the routine can only show
one digit at a time, it must be called frequently, otherwise display strobing will occur. This program
will update the display while waiting for other things to happen.

The clock display is created by moving the minutes value (secs / 60) into the thousands and
hundreds columns of the variable ti me. The remaining seconds (secs // 60) are added to ti ne,
placing them in the tens and ones columns. Here's how the conversion math works:

Example: 754 seconds

754 /60 = 12
12 x 100 = 1200 (time = 1200)
754 // 60 = 34

1200 + 34 = 1234 (time = 1234; 12 minutes and 34 seconds)

Now that the t i nme display value is ready, the segments are cleared for the next update. Clearing the
current segments value keeps the display sharp. If this isn't done, the old segments value will cause
“ghosting” in the display. A LOOKUP table is used to enable the current digit and the segments for
that digit are READ from an EEPROM DATA table.

The StampWorks display does not have the colon (:) normally found on a digital clock, so we'll enable
the decimal point behind the second digit. If the current digit is not a second, the decimal point
illumination is skipped. The final steps are a short delay so the digit illuminates and the current digit
variable is updated.

The main loop of this program watches an incoming square-wave signal, produced by the
StampWorks signal generator. When set at 1 Hz, this signal goes from LOW to HIGH once each

StampWorks Manual Version 1.2 e Page 71

Experiment #10: LED Clock Display

second. When this low-to-high transition occurs, the seconds counter is updated. The modulus
operator (//) is used to keep seconds in the range of 0 to 3599 (the range of seconds in one hour).

When the seconds counter is updated, the display is refreshed and then the program waits for the
incoming signal to go low, updating the display during the wait. If the program went right back to the
top and the incoming signal was still high, the seconds counter would be prematurely updated,
causing the clock to run fast. Once the incoming signal does go low, the program loops back to the
top where it waits for the next low-to-high transition from the pulse generator.

Challenge

If the decimal point illumination is modified as follows, what will happen? Modify and download the
program to check your answer.

segs = segs + (DPoint * tine.BitO0) " illum nate deci mal point

Page 72 e StampWorks Manual Version 1.2

Using Character LCDs

NERIAEIEE Using Character LCDs

While LEDs and seven-segment displays make great output devices, there will be projects that
require providing more complex information to the user. Of course, nothing beats the PC video
display, but these are large, expensive and almost always impractical for microcontroller projects.
Character LCD modules, on the other hand, fit the bill well. These inexpensive modules allow both
text and numeric output, use very few I/O lines and require little effort from the BASIC Stamp.

Character LCD modules are available in a wide variety of configurations: one-line, two-line and four-
line are very common. Screen width is also variable, but is usually 16 or 20 characters for each line.

o ULILILILILILILILILILILILIL O

FPHEALLH
STHMFLORES

The StampWorks LCD module (2 lines x 16 characters).
Datasheet is available for download from www.parallaxinc.com.

The StampWorks LCD module connects to the lab board by a 14-pin IDC header. The header is
keyed, preventing the header from being inserted upside-down.

StampWorks Manual Version 1.2 e Page 73

Using Character LCDs

Initialization

The character LCD must be initialized before sending information to it. The projects in this document
initialize the LCD in accordance with the specification for the Hitachi HD44780 controller. The Hitachi
controller is the most popular available and many controllers are compatible with it.

Modes Of Operation

There are two essential modes of operation with character LCDs: sending a character and sending a
command. When sending a character, the RS line is high and the data sent is interpreted as a
character to be displayed at the current cursor position. The code sent is usually the ASCII code FOR
the character. Several non-ASCII characters also are available in the LCD, as well as up to eight user-
programmable custom characters.

Commands are sent to the LCD by taking the RS line low before sending the data. Several standard
commands are available to manage and manipulate the LCD display.

Clear $01 Clears the LCD and moves cursor to first position of first line
Home $02 Moves cursor to first position of first line

Cursor Left $10 Moves cursor to the left

Cursor Right $14 Moves cursor to the right

Display Left $18 Shifts entire display to the left

Display Right $1C Shifts entire display to the right

Connecting The LCD
The StampWorks LCD has a 14-pin IDC connector at the end of its cable. The connector is “keyed”

so that it is always inserted correctly into the StampWorks lab. Simply align the connector key (small
bump) with the slot in the LCD socket and press the connector into the socket until it is firmly seated.

Page 74 e StampWorks Manual Version 1.2

Experiment #11: A Basic LCD Demonstration

StampWearks

Experiment #11:
A Basic LCD Demonstration

This program demonstrates character LCD fundamentals by putting the StampWorks LCD module
through its paces.

New PBASIC elements/commands to know:

+ PULSOQUT

* HghN b, LowNi b
» " (Exclusive OR operator)

Building The Circuit

P4
P5
P6
P7

PO

P3

D4

D5
D6
D7

RW
RS

StampWorks LCD Module

' Pur pose. . .
' Aut hor
' E-mail....
' Started. ..
' Updat ed. . .

' [$STAWP BS2}

Ex11 - LCD Deno. BS2
Essential LCD control

Par al | ax

st anpt ech@ar al | axi nc. com

01 MAY 2002

StampWorks Manual Version 1.2 e Page 75

Experiment #11: A Basic LCD Demonstration

Thi s program denonstrates essential character LCD control.

' The connections for this programconformto the BS2p LCDI N and LCDOUT
' commands. Use this programfor the BS2, BS2e or BS2sx. There is a separate
program for the BS2p.

" I/O Definitions

E CON 0 ' LCD Enable pin (1 = enabl ed)
RS CON 3 ' Register Select (1 = char)
LCDbus VAR QutB ' 4-bit LCD data bus

' Constants

drLCD CON $01 ' clear the LCD

Cr sr Hm CON $02 ' nove cursor to hone position
Cr sr Lf CON $10 ' nove cursor |eft

CrsrRt CON $14 ' nove cursor right

Di spLf CON $18 ' shift displayed chars left

Di spRt CON $1C ' shift displayed chars right
DDRam CON $80 ' Display Data RAM control

' Vari abl es

char VAR Byt e ' character sent to LCD

i ndex VAR Byt e ' | oop counter

' EEPROM Dat a

Page 76 e StampWorks Manual Version 1.2

Experiment #11: A Basic LCD Demonstration

Vsg DATA "THE BASI C STAMP! ", O ' prel oad EEPROM wi t h nmessage

Initialize:
DirL = 941111101 ' setup pins for LCD

LCD Init:
PAUSE 500 ' let the LCD settle
LCDbus = %9011 ' 8-bit npde
PULSQUT E, 1
PAUSE 5
PULSQUT E, 1
PULSQUT E, 1
LCDbus = %9010 ' 4-bit node
PULSQUT E, 1
char = 990001100 ' disp on, crsr off, blink off
GOSUB LCD_Commrand
char = %90000110 ' inc crsr, no disp shift
GOSUB LCD_Commrand

Mai n:
char = drLCD ' clear the LCD
GOSUB LCD_Comrand
PAUSE 500
i ndex = Msg ' get EE address of nessage
Read_Char:
READ i ndex, char ' get character from EEPROM
IF (char = 0) THEN Msg_Done ‘" if 0, message is conplete
GOSUB LCD Wite ' wite the character
index = index + 1 ' point to next character
GOTO Read_Char ' go get it
Msg_Done: ' the nessage is conplete
PAUSE 2000 ' wait 2 seconds
char = CrsrHm ' nove the cursor hone
GOSUB LCD_Commrand
char = %©0001110 ' turn the cursor on

StampWorks Manual Version 1.2 e Page 77

Experiment #11: A Basic LCD Demonstration

GOSUB LCD_Comrand
PAUSE 500

char = CrsrRt

FOR index = 1 TO 15 ' nove the cursor accross display
GOSUB LCD_Commrand
PAUSE 150

NEXT

FOR index = 14 TO O ' go backward by noving cursor
char = DDRam + i ndex ' to a specific address
GOSUB LCD_Comrand
PAUSE 150

NEXT

char = 990001101 ' cursor off, blink on
GO0sUB LCD Command
PAUSE 2000

char = 990001100 " blink off
GOSUB LCD_Commrand

FOR index = 1 TO 10 ' flash display
char = char » 990000100 ' toggle display bit
GOSUB LCD_Commrand
PAUSE 250

NEXT

PAUSE 1000

FOR index = 1 TO 16 ' shift display
char = DispRt
GOSUB LCD_Comrand
PAUSE 100

NEXT

PAUSE 1000

FOR index = 1 TO 16 ' shift display back
char = DispLf
GOSUB LCD_Comrand
PAUSE 100

NEXT

PAUSE 1000

GOTO Mai n ' do it all over

END

Page 78 e StampWorks Manual Version 1.2

Experiment #11: A Basic LCD Demonstration

LCD_Conmmand:
LOW RS ' enter comand node

LCD Wite:
LCDbus = char. H ghNi b ' out put high nibble
PULSQUT E, 1 ' strobe the Enable |ine
LCDbus = char.LowNi b ' output |ow nibble
PULSQUT E, 1
H GH RS ' return to character node
RETURN

Behind The Scenes

This is a very simple program, which demonstrates the basic functions of a character LCD. The LCD is
initialized using four-bit mode in accordance with the Hitachi HD44780 controller specifications. This
mode is used to minimize the number of BASIC Stamp I/O lines needed to control the LCD. While it is
possible to connect to and control the LCD with eight data lines, this will not cause a noticeable
improvement in program performance and will use four more I/0 lines.

StampWorks Manual Version 1.2 e Page 79

Experiment #11: A Basic LCD Demonstration

The basics of the initialization are appropriate for most applications:

« The display is on

e The cursor is off

« Display blinking is disabled

e The cursor is automatically incremented after each write
« The display does not shift

With the use of four data bits, two write cycles are necessary to send a byte to the LCD. The BASIC
Stamps’ H ghNi b and LowNi b variable modifiers make this process exceedingly easy. Each nibble is
latched into the LCD by blipping the E (enable) line with PULSOUT.

The demo starts by clearing the LCD and displaying a message that has been stored in a DATA
statement. This technique of storing messages in EEPROM is very useful and makes programs easier
to update. In this program, characters are written until a zero is encountered. This method lets us
change the length of the string without worry about FOR- NEXT control settings. With the message
displayed, the cursor position is returned home (first position of first line) and turned on (an
underline cursor appears).

The cursor is sent back and forth across the LCD using two techniques. The first uses the cursor-right
command. Moving the cursor back is accomplished by manually positioning the cursor. Manual cursor
positioning is required by many LCD programs for tidy formatting of the information in the display.

With the cursor back home, it is turned off and the blink attribute is enabled. Bl i nk causes the
current cursor position to alternate between the character and a solid black box. This can be useful
as an attention getter. Another attention-getting technique is to flash the entire display. This is
accomplished by toggling the display enable bit. The Exclusive OR operator (/) simplifies bit toggling,
as any bit XOR'd with a “1” will invert (1 XOR 1 =0, 0 XOR 1 = 1).

Using the display shift commands, the entire display is shifted off-screen to the right, then back.

What this demonstrates is that the display is actually a window into the LCD’s memory. One method
of using the additional memory is to write messages off-screen and shift to them.

Page 80 e StampWorks Manual Version 1.2

Experiment #12: Creating Custom LCD Characters

S‘c 2] Experiment #12:
Sl Creating Custom LCD Characters

This program demonstrates the creation of custom LCD characters, animation with the custom
characters and initializing the LCD for multi-line mode.

Building The Circuit

Use the same circuit as in Experiment #11.

' File...... Ex12 - LCD Characters. BS2
' Pur pose... Custom LCD Characters

' Aut hor. ... Parall ax

' E-mail.... stanptech@arall axinc.com
' Started. ..

Updated... 01 MAY 2002

{ $STAMP BS2}

Thi s program denonstrates custom character creation and ani mati on on a
character LCD.

' The connections for this programconformto the BS2p LCDI N and LCDOUT
conmmands. Use this program for the BS2, BS2e or BS2sx. There is a separate
program for the BS2p.

" I/O Definitions

E CON 0 ' LCD Enable pin (1 = enabl ed)
RS CON 3 ' Register Select (1 = char)
LCDbus VAR Qut B ' 4-bit LCD data bus

StampWorks Manual Version 1.2 e Page 81

Experiment #12: Creating Custom LCD Characters

' Constants

drLCD CON $01 ' clear the LCD

Cr sr Hm CON $02 ' nove cursor to hone position
CrsrLf CON $10 ' nove cursor left

CrsrRt CON $14 ' nove cursor right

Di spLf CON $18 ' shift displayed chars left
D spRt CON $1C ' shift displayed chars right
DDRam CON $80 ' Display Data RAM contr ol
CGRam CON $40 ' Custom character RAM

Li nel CON $80 ' DDRAM address of line 1

Li ne2 CON $CO ' DDRAM address of line 2

' Vari abl es

char VAR Byt e ' character sent to LCD
newChar VAR Byt e ' new character for animation
i ndex1 VAR Byt e ' | oop counter

i ndex2 VAR Byt e ' loop counter

' EEPROM Dat a

Mgl DATA "THE BASI C STAWP " ' prel oad EEPROM wi t h nessages
Msg2 DATA " IS VERY coOL! ", 3

CCo DATA $0E, $1F, $1C, $18, $1C, $1F, $0E, $00 ' character O
CC1 DATA $O0E, $1F, $1F, $18, $1F, $1F, $O0E, $00 ' character 1
cc2 DATA $O0E, $1F, $1F, $1F, $1F, $1F, $0E, $00 ' character 2
Smi | ey DATA $00, $0A, $0A, $00, $11, $0E, $06, $00 ' sniley face

Initialize:
DirL = 9%41111101 ' setup pins for LCD

Page 82 e StampWorks Manual Version 1.2

Experiment #12: Creating Custom LCD Characters

LCD Init:
PAUSE 500
LCDbus = %0011
PULSQUT E, 1
PAUSE 5
PULSQUT E, 1
PULSQUT E, 1
LCDbus = %9010
PULSQUT E, 1
char = 990101000
GOSUB LCD_Comrand
char = 990001100
GOSUB LCD_Comrand
char = 990000110
GOSUB LCD_Comrand

Downl oad_Char s:
char = CGRam
GOSUB LCD_Comrand
FOR i ndexl = CCO TO (Smiley + 7)
READ i ndex1, char
GOSUB LCD Wite
NEXT

let the LCD settle

8-bit nopde

4-bit node

mul ti-line node

di sp on, crsr off, blink off
inc crsr, no disp shift

downl oad custom chars to LCD
point to CG RAM

prepare to wite CG data
build 4 custom chars

get byte from EEPROM

put into LCD CG RAM

Mai n:
char = drLCD
GOSUB LCD_Commrand
PAUSE 250

FOR i ndex1 = 0 TO 15
READ (Msgl + index1), char
GOSUB LCD Wite

NEXT

PAUSE 2000

Ani mat i on:
FOR indexl = 0 TO 15

READ (Msg2 + index1l), newChar
FOR index2 = 0 TO 4
char = Line2 + indexl

clear the LCD

get nmessage from EEPROM
read a character
wite it

wait 2 seconds

cover 16 characters

get new char from 2nd nessage
5 characters in animation cycle
set new DDRAM addr ess

StampWorks Manual Version 1.2 e Page 83

Experiment #12: Creating Custom LCD Characters

GOSUB LCD_Commrand
LOOKUP i ndex2, [0, 1, 2, 1, newChar], char

GOSUB LCD Wite ' wite ani mati on character
PAUSE 50 ' delay between ani mati on chars
NEXT
NEXT
PAUSE 1000
GOTO Mai n

' do it all over
END

LCD_Comrand:
LOW RS ' enter command node

LCD Wite:
LCDbus = char. H ghNi b ' out put high nibble
PULSQUT E, 1 ' strobe the Enable |ine
LCDbus = char.LowNi b ' output |ow nibble
PULSQUT E, 1
H GH RS ' return to character node
RETURN

Page 84 e StampWorks Manual Version 1.2

Experiment #12: Creating Custom LCD Characters

Behind The Scenes

In this program, the LCD is initialized for multi-line mode. This will allow both lines of the
StampWorks LCD module to display information. With the display initialized, custom character data is
downloaded to the LCD.

The LCD has room for eight, user-definable customer characters. The data is stored for these
characters in an area called CGRAM and must be downloaded to the LCD after power-up and
initialization (custom character definitions are lost when power is removed from the LCD). Each
custom character requires eight bytes of data. The eighth byte is usually $00, since this is where the
cursor is positioned when under the character.

The standard LCD font is five bits wide by seven bits tall. You can create custom characters that are
eight bits tall, but the eighth line is generally reserved for the underline cursor. Here’s an example of
a custom character definition:

Bl | co01110=$0E
BEREE c-11111=3$1F
BN %11100 = $1C
%11000 = $18
%11100 = $1C

HEN
BEEEE 11111 =3$1F
EEE

%01110 = $0E
(cursor line)

The shape of the character is determined by the ones and zeros in the data bytes. One in a given bit
position will light a pixel; zero will extinguish it.

The bit patterns for custom characters are stored in the BASIC Stamp’s EEPROM with DATA
statements. To move the patterns into the LCD, the CGRam command is executed and the characters
are written to the display. Before the characters can be used, the display must be returned to
“normal” mode. The usual method is to clear the display or home the cursor.

Interestingly, the LCD retrieves the bit patterns from memory while refreshing the display. In

advanced applications, the CGRam memory can be updated while the program is running to create
unusual display effects.

StampWorks Manual Version 1.2 e Page 85

Experiment #12: Creating Custom LCD Characters

The heart of this program is the animation loop. This code grabs a character from the second
message, then, for each character in that message, displays the animation sequence at the desired
character location on the second line of the LCD. A LOOKUP table is used to cycle the custom
characters for the animation sequence. At the end of the sequence, the new character is revealed.

Challenge

Create your own custom character sequence. Update the initialization and animation code to
accommodate your custom characters.

Page 86 e StampWorks Manual Version 1.2

Experiment #13: Reading the LCD RAM

StampWearks

This program demonstrates the use of the LCD’s CGRAM space as external memory.

Experiment #13:
Reading the LCD RAM

New PBASIC elements/commands to know:

* | nA |nB,

InC, InD

Building The Circuit

P4 & D4
P5 & D5
P6 O—— D6
P7T O o7 StampWorks LCD Module
PO —E
P2 R/W
P3 RS
47K
= \/ss
' File...... Ex13 - LCD Read. BS2
' Purpose... Read data from LCD
' Aut hor. ... Parallax
' E-mail.... stanptech@arall axinc.com

Started. ..

Updated... 01 MAY 2002

{ $STAVP BS2}

StampWorks Manual Version 1.2 e Page 87

Experiment #13: Reading the LCD RAM

' This program denonstrates how to read data fromthe LCD s di splay or CGRAM

areas.

' The connections for this programconformto the BS2p LCDIN and LCDOUT

comands.

Use this program for the BS2, BS2e or
program for the BS2p.

BS2sx. There is a separate

LCD Enable pin (1 = enabl ed)
LCD Read/Wite pin (1 = wite)
Regi ster Select (1 = char)

4-bit LCD data bus

drLCD
Cr sr Hm
CrsrLf
CrsrRt
Di spLf
Di spRt
DDRam
CGRam

clear the LCD

nmove cursor to hone position
nmove cursor |eft

nmove cursor right

shift di splayed chars |eft
shift di splayed chars right
Di spl ay Data RAM contr ol

Cust om char act er RAM

char
i ndex
r Var
addr
t Qut

Page 88 e StampWorks Manual Version 1.2

character sent to LCD

| oop counter

for random nunber

address to wite/read

test value to wite to LCD

Experiment #13: Reading the LCD RAM

VAR
VAR
VAR

tin

tenp
wi dt h

Byt e
Wor d
Ni b

test value to read from LCD
tenp val ue for nuneric display
wi dth of nunber to display

Initialize:
DirL = 911111101

LCD Init:
PAUSE 500
LCDbusQut = 99011
PULSQUT E, 1
PAUSE 5
PULSQUT E, 1
PULSQUT E, 1
LCDbusQut = 99010
PULSQUT E, 1
char = 990001100
GOSUB LCD_Commrand
char = 990000110
GOSUB LCD_Commrand

setup pins for LCD

let the LCD settle
8-bit nobde

4-bit node

di sp on, crsr off, blink off

inc crsr, no disp shift

Mai n:
char = A rLCD
GO0sUB LCD Command

FOR index = 0 TO 14
LOOKUP i ndex, ["ADDR=??
GOSUB LCD Wite

NEXT

Loop:
RANDOM r Var
addr = rVar.LowByte & $3F
tQut = rVar. H ghByte

char CGRam + addr
GOSUB LCD_Comrand

2?22/ 2?2?2"],

char

clear the LCD

create display

gener at e random nunber
create address (0 to 63)
create test value (0 to 255)

set CGRAM poi nt er

StampWorks Manual Version 1.2 e Page 89

Experiment #13: Reading the LCD RAM

char = tCut

GOSUB LCD Wite ' nove the value to CGRAM
PAUSE 100 ' wait a bit, then go get it
char = CGRam + addr ' set CGRAM poi nter

GOSUB LCD_Commrand

GOSUB LCD_Read ' read value from LCD

tIn = char

di splay results

char = DDRam + 5 ' show address at position 5
GO0sUB LCD Command

tenp = addr

width = 2

GOSUB Put _Val

char = DDRam + 9 ' show output at position 8
GO0sUB LCD Command

tenp = tQut

width = 3

GOSUB Put _Val

char = DDRam + 13 ' show i nput at position 12
GOSUB LCD_Commrand

tenp = tin

width = 3

GOSUB Put _Val

PAUSE 1000

GOTO Loop ' do it again

END

Put _Val :

FOR index = (width - 1) TOO ' display digits left to right
char = (tenp DI G index) + 48 ' convert digit to ASCl I
GOSUB LCD Wite ' put digit in display

NEXT

RETURN

Page 90 e StampWorks Manual Version 1.2

Experiment #13: Reading the LCD RAM

LCD_Command:

LOW RS

LCD Wite:

LCDbusQut = char. H ghNi b
PULSQUT E, 1

LCDbusQut = char.LowNi b
PULSQUT E, 1

H CH RS

RETURN

LCD Read:

H GH RS

H GH RW

LCDdi rs = %9000

H GH E

char. Hi ghNi b = LCDbusl n
LOWE

H CGH E

char. LowNi b = LCDbusl n
LOWE

LCDdirs = %111

LOW RW

RETURN

enter command node

out put hi gh ni bbl e
strobe the Enable |ine
out put | ow ni bbl e

return to character node

data comand
read
make data |ines inputs

get high nibble

get | ow ni bbl e

return data lines to outputs

StampWorks Manual Version 1.2 e Page 91

Experiment #13: Reading the LCD RAM

Behind The Scenes

This program demonstrates the versatility of the BASIC Stamp’s I/O lines and their ability to be
reconfigured mid-program. Writing to the LCD was covered in the last two experiments. To read data
back, the BASIC Stamp’s I/O lines must be reconfigured as inputs. This is no problem for the BASIC
Stamp. Aside from the I/O reconfiguration, reading from the LCD requires an additional control line:
RW. In most programs this line can be tied low to allow writing to the LCD. For reading from the
LCD the RW line is made high.

The program generates an address and data using the RANDOM function. The address is kept in the
range of 0 to 63 by masking out the highest bits of the LowByt e returned by the RANDOM function.
The Hi ghByt e is used as the data to be written to and read back from the LCD.

The data is stored in the LCD’s CGRAM area. This means -- in this program -- that the CGRAM
memory cannot be used for custom characters. In programs that require less than eight custom
characters the remaining bytes of CGRAM can be used as off-board memory.

Reading data from the LCD is identical to writing: the address is set and the data is retrieved. For this
to take place, the LCD data lines must be reconfigured as inputs. Blipping the E (enable) line makes
the data (one nibble at a time) available for the BASIC Stamp. Once again, Hi ghNi b and LowNi b are
used, this time to build a single byte from the two nibbles returned during the read operation.

When the retrieved data is ready, the address, output data and input data are written to the LCD for
examination. As short subroutine, Put _Val , handles writing numerical values to the LCD. To use this
routine, move the cursor to the desired location, put the value to be displayed in t enp, the number
of characters to display in wi dt h, then call Put _Val . The subroutine uses the DI G operator to
extract a digit from t enp and adds 48 to convert it to ASCII so that it can be displayed on the LCD.

Page 92 e StampWorks Manual Version 1.2

Moving Forward

Stam PW@-}’kS Expc?rlment #14:
Magic 8-Ball Game
This program demonstrates the 8x10 font capability of StampWorks LCD module. The 8x10 font
allows descended letters (g, j, p, g and y) to be displayed properly.
New PBASIC elements/commands to know:
e LOOKDOWN
Building The Circuit

Add this pushbutton to the circuit in Experiment #11 (remember to reconnect LCD.RW to Vss).

E |
%
i |
! 10K |
D7 , |
P15 i
| D !
!
| |
E ; Vss i
b e e e o e e |
File...... Ex14 - LCD Magic 8-Ball.BS2
Purpose... Magic 8-Ball simulation
Aut hor. ... Parall ax
E-mail.... stanptech@arall axinc.com
Started...

Updated... 01 MAY 2002

{ $STAVP BS2}

StampWorks Manual Version 1.2 e Page 93

Experiment #14: Magic 8-Ball Game

This program sinul ates a Magic 8-Ball. Ask a question, then press the
button to get your answer.

The program al so denbnstrates using a 2-Line display as a single-line display
with the 5x10 font set. \Wen using the 5x10 font, true descended characters
are avail abl e but nust be remapped fromthe LCD ROM

The connections for this programconformto the BS2p LCDI N and LCDOUT
conmmands. Use this program for the BS2, BS2e or BS2sx. There is a separate
program for the BS2p.

E CON 0 ' LCD Enable pin (1 = enabl ed)
RS CON 3 ' Register Select (1 = char)
LCDbus VAR Qut B ' 4-bit LCD data out

AskBut t on CON 15 ' Ask button input pin

' Constants

drLCD CON $01 ' clear the LCD

Cr sr Hm CON $02 ' nove cursor to hone position
Cr sr Lf CON $10 ' nove cursor |eft

CrsrRt CON $14 ' nove cursor right

Di spLf CON $18 ' shift displayed chars left

Di spRt CON $1C ' shift displayed chars right
DDRam CON $80 ' Display Data RAM contr ol
CCRam CON $40 ' Custom character RAM contr ol
NumAnswer s CON 6 ' 6 possible answers

g CON $E7 ' DDROM addresses of descenders
_ CON $EA

_p CON $FO

_q CON $F1

_y CON $F9

Page 94 e StampWorks Manual Version 1.2

Moving Forward

' Vari abl es

char VAR Byt e ' character sent to LCD
addr VAR Byt e ' nessage address

swhat a VAR Byt e ' workspace for BUTTON
answer VAR Ni b ' answer pointer

cl ock VAR Ni b ' ani mation cl ock

pntr VAR Ni b ' pointer to ani mati on character
' EEPROM Dat a

Pr onpt DATA "Ask a question", O

AnsO DATA "Definitely YES', O

Ans1 DATA "Possible...", 0

Ans2 DATA "Definitely NO', 0

Ans3 DATA "Not likely...", O

Ans4 DATA "Answer uncertain", O

Ans5 DATA "Pl ease ask again", 0

" Initialization

Initialize:
DirL = 941111101 ' setup pins for LCD

LCD Init:
PAUSE 500 " let the LCD settle
LCDbus = %9011 ' 8-bit nopde
PULSQUT E, 1
PAUSE 5
PULSQUT E, 1
PULSQUT E, 1
LCDbus = %9010 ' 4-bit node
PULSQUT E, 1
char = %9©0100100 ' sel ect 5x10 font
GOSUB LCD_Comrand
char = 990001100 ' disp on, crsr off, blink off
GOSUB LCD_Comrand

StampWorks Manual Version 1.2 e Page 95

Experiment #14: Magic 8-Ball Game

char = %0000110 ' inc crsr, no disp shift
GOSUB LCD_Commrand

' Program Code

Mai n:
char = drLCD ' clear the LCD
GO0sUB LCD Command
addr = Pronpt
GOSUB Show_Message ' print pronpt

Rol | em
GOSUB Shuffl e " shuffle until button pressed
PAUSE 5
BUTTON AskButton, 0, 255, 10, swbata, 1, Show_Answer
GOTO Rol | em

Show_Answer :
' get address of answer nessage
LOOKUP answer, [AnsO, Ansl, Ans2, Ans3, Ans4, Ans5], addr

char = drLCD
GOSUB LCD_Comrand
GOSUB Show_Message

PAUSE 2000 ' give tine to read answer
GOTO Mai n ' do it all over
END

' Subroutines

LCD_Command:
LOW RS ' enter command node

LCD Wite:
LCDbus = char. H ghNi b ' out put high nibble
PULSQUT E, 1 ' strobe the Enable |ine
LCDbus = char.LowNi b ' output |ow nibble
PULSQUT E, 1
H GH RS ' return to character node
RETURN

Page 96 e StampWorks Manual Version 1.2

Moving Forward

Show_Message:
READ addr, char
IF (char = 0) THEN Msg_Done
GOsUB Transl at e
GOSUB LCD Wite
addr = addr + 1
GOTO Show_Message

Msg_Done:
RETURN

convert to descender font

' - does not change other characters

Transl at e:
LOOKDOMN char, ["g", "j", "qg",
LOOKWP char, [_g, j, 4, _p, _yl.
RETURN

Shuf fl e:

answer = (answer + 1) // NumAnswers

clock = (clock + 1) // 15

IF (clock > 0) THEN Shuffl e_Done
char = DDRam + 15

GOSUB LCD_Commrand

LOOKUP pntr, ["-+]*"], char
GOsuUB LCD Wite

pntr = (pntr + 1) // 4

Shuf f | e_Done:
RETURN

Behind The Scenes

read a character from EEPROM
if 0, nessage is conplete
fix letters with descenders
wite the character

point to next character

updat e answer pointer
updat e poi nter clock
tinme to update ani nati on?
yes, wite at pos 15

| oad ani mati on char act er
wite it
updat e ani mati on char

The standard 5x7 LCD font suffers aesthetically when it comes to descended letters, those letters
with tails (g, j, p, g and y). The nature of the font map causes these letters to be “squashed” into the
display. Many LCDs support a 5x10 character font and provide additional mapping for properly

descended characters.

Using the 5x10 font is straightforward; it requires a single additional command in the initialization
sequence. To display properly descended characters, however, is a bit trickier since these characters

StampWorks Manual Version 1.2 e Page 97

Experiment #14: Magic 8-Ball Game

are not mapped at equal offsets to their ASCII counterparts. Thankfully, the BASIC Stamp has a
couple of table-oriented commands that simplify the translation process.

After initialization, the screen is cleared and the user is prompted to think of a question. The
Show_Message subroutine displays a message at the current cursor position. The message is stored
in a DATA statement and passed to the subroutine by its EEPROM address. Show Message reads
characters from the EEPROM until it finds a zero, passing each character to the subroutine,
Tr ansl at e, which re-maps the ASCII value for descended letters. Transl at e uses a clever trick
with LOOKUP and LOOKDOWN.

When a character is passed to Tr ansl at e, it is compared to the list of known descended letters. If
the character is in this list, it is converted to a value that will be used by the LOOKUP table to re-map
the character to the descended version in the LCD font map. If the character is not in the descended
list, it will pass through Tr ansl at e unaffected.

The main loop of the program waits for you to press the button, creating a randomized answer by
continuously calling the Shuf f | e subroutine. Shuf f | e updates the answer variable and creates an
animated bug. The animation is created with standard characters and updated every 15 cycles
through the shuf f | e subroutine. When the button is finally pressed, the EEPROM address of the
corresponding answer is loaded with LOOKUP and the “magic” answer is displayed.

Challenge

Create custom characters that use the 5x10 font mode. Note: 16 bytes must be used for each
character, even though only ten will be displayed.

Page 98 e StampWorks Manual Version 1.2

Moving Forward

SERIAEIEE Moving Forward

The first three sections of this manual dealt specifically with output devices, because the choice of
output to the user is often critical to the success of a project. By now, you should be very
comfortable with LEDs, seven-segment displays and LCDs. From this point forward we will present a
variety of experiments -- some simple, others complex which will round your education as a BASIC
Stamp programmer and give you the confidence you need to develop your own BASIC Stamp-
controlled applications.

Remember, the key to success here is to complete each experiment and to take on each challenge.

Then, go further by challenging yourself. Each time you modify a program you will learn something.
It's okay if your experiments don't work as expected, because you will still be learning.

StampWorks Manual Version 1.2 e Page 99

Experiment #15: Debouncing Multiple Inputs

SeR Wy Experiment #15:
Debouncing Multiple Inputs

The experiment will teach you how to debounce multiple BASIC Stamp inputs. With modification, any
number of inputs from two to 16 can be debounced with this code.

New PBASIC elements/commands to know:
e ~ (1's conplinment operator)
e CLS (DEBUG nodifier)
 IBIN, IBIN1 — IBIN16 (DEBUG nodifier)

Building The Circuit

B s s . s s . s s . . s . s e s

File...... Ex15 - Debounce. BS2
Purpose... Milti-input button debouncing
Aut hor. ... Parall ax

E-mail.... stanptech@arall axinc.com

StampWorks Manual Version 1.2 e Page 101

Experiment #15: Debouncing Multiple Inputs

Started...
Updated... 01 MAY 2002

{$STAVP BS2}

Pr ogram Descri ption

Thi s program denonstrates the sinultaneous debouncing of nultiple inputs. The

i nput subroutine is easily adjusted to handl e any nunber of inputs.

" I/O Definitions

four inputs, pins 0 - 3

Sw nput s VAR I nA
Vari abl es

swi t ches VAR Ni b

X VAR Ni b

debounced i nputs
| oop counter

Mai n:
GOSUB Get _Swi t ches
DEBUG Home, "Inputs =", |IBIN4 switches
PAUSE 50
GOTO Mai n

END

get debounced i nputs

di splay in binary node
alittle time between readi ngs
do it again

Page 102 e StampWorks Manual Version 1.2

Experiment #15: Debouncing Multiple Inputs

Get _Swi t ches:

switches = %4111 ' enable all four inputs
FOR x = 1 TO 10

switches = switches & ~Sw nputs ' test inputs

PAUSE 5 ' delay between tests
NEXT
RETURN

Behind The Scenes

When debouncing only one input, the BASIC Stamp’s BUTTON function works perfectly and even
adds a couple of useful features (like auto-repeat). To debounce two or more inputs, we need to
create a bit of code. The workhorse of this experiment is the subroutine Get _Switches. As
presented, it will accommodate four switch inputs. It can be modified for any number of inputs from
two to 16.

The purpose of Get _Swi t ches is to make sure that the inputs stay on solid for 50 milliseconds with
no contact bouncing. Debounced inputs will be retuned in the variable, swi t ches, with a valid input
represented by a 1 in the switch position.

The Get _Swi t ches routine starts by assuming that all switch inputs will be valid, so all the bits of
switches are set to one. Then, using a FOR- NEXT loop, the inputs are scanned and compared to the
previous state. Since the inputs are active low (zero when pressed), the one’s compliment operator
(~) inverts them. The And operator (&) is used to update the current state. For a switch to be valid,
it must remain pressed through the entire FOR- NEXT loop.

Here's how the debouncing technique works: When a switch is pressed, the input to the BASIC
Stamp will be zero. The one’s compliment operator will invert zero to one. One “Anded” with one is
still one, so that switch remains valid. If the switch is not pressed, the input to the BASIC Stamp will
be one (because of the 10K pull-up to Vdd). One is inverted to zero. Zero “Anded” with any number
is zero and will cause the switch to remain invalid through the entire debounce cycle.

The debounce switch inputs are displayed in a DEBUG window with the | BI N4 modifier so that the
value of each switch input is clearly displayed.

Challenge

Modify the program to debounce and display eight switches.

StampWorks Manual Version 1.2 e Page 103

Experiment #16: Counting Events

S’CamPW@l’kS Experiment #16:
" Counting Events

This experiment demonstrates an events-based program delay.

Building The Circuit

oL I ;
P15 CF—0 PULSE GENERATOR g
e

File...... Ex16 - Counter.BS2
Purpose... Counts external events
Aut hor. ... Parall ax

E-mail.... stanptech@arall axinc.com
Started. ..

Updated... 01 MAY 2002

{ $STAVP BS2}

' Counts extenal events by wait for a lowto-high transition on the event
i nput pin.

" I/O Definitions

Event | n VAR 1 n15 ' event input pin

StampWorks Manual Version 1.2 e Page 105

Experiment #16: Counting Events

' Constants

| sLow CON 0

I sHi gh CON 1

Tar get CON 1000 ' target count
' Vari abl es

eCount VAR Wor d ' event count

Init:
PAUSE 250 ' | et DEBUG wi ndow open
DEBUG CLS, "Started... ", CR
eCount = 0 ' clear counter

Mai n:
GOSUB Wait For Count ‘" wait for 1000 pul ses
DEBUG " Count conplete."

END

Wait _For_ Count:
IF (Eventln = IsLow) THEN Wit _For_Count " wait for input to go high
eCount = eCount + 1 ' increnent event count
DEBUG Hone, 10, "Count = ", DEC eCount, CR

Page 106 e StampWorks Manual Version 1.2

Experiment #16: Counting Events

IF (eCount = Target) THEN Wait_Done ' check against target
Wit _Low
IF (Eventln = IsH gh) THEN Wait_Low " wait for input to go |ow
GOTO Wit _For _Count
Wai t _Done
RETURN

Behind The Scenes

The purpose of the Wait _For _Count subroutine is to cause the program to wait for a specified
number of events. In an industrial setting, for example, a packaging system we might need to run a
conveyor belt until 100 boxes pass.

When the program is passed to Wait_For_Count, the input pin is monitored for a low-to-high
transition. When the line goes high, the counter is incremented and the program waits for the line to
go low. When this happens, the code loops back for the next high input. When the target count is
reached, the subroutine returns to the main program. The time spent in the subroutine is determined
by the rate of incoming events.

Note that the subroutine expects a clean input. A noisy input could cause spurious counts, leading to
early termination of the subroutine. One method of dealing with a noisy input — when the time
between expected events is known — is to add a PAUSE statement after the start of an event. The
idea is to PAUSE when the event starts and end the PAUSE after the event with a bit of lead-time
before the next event is expected. The code that follows works when the events are about a half-
second in length and the time between events is two seconds:

Wai t _For _Count :

IF (P_in = IsLow) THEN Wit _For _Count " wait for high pulse
pCount = pCount + 1 ' increnent count
DEBUG Hone, 10, "Count = ", DEC eCount, CR
I F (pCount = Target) THEN Wit _Done ' check agai nst target
PAUSE 1500 ' cl ean-up noi sy i nput

VWai t _Low:
IF (P_in = IsH gh) THEN Wait_Low " wait for pulse to go | ow
GOTO Wait_For _Count

Wi t _Done:
RETURN

StampWorks Manual Version 1.2 e Page 107

Experiment #17: Frequency Measurement

S’camp\/\fc.ﬂ:rks Experiment #17:
| Frequency Measurement

This experiment determines the frequency of an incoming pulse stream by using the BASIC Stamp's
COUNT function.

New PBASIC elements/commands to know:
e COUNT

Building The Circuit (Note that schematic is NOT chip-centric)

+5
T
+5 +5 |
3
4 8 o—71 |
7 e
VR-10K
3 6 >
POCTH— 555 3 K
2
1 0.1uF
= Vss = Vss
File...... Ex17 - Freql nl. BS2
Pur pose. .. Frequency i nput
Aut hor. ... Parall ax
E-mail.... stanptech@arall axinc.com
Started. ..

Updated... 01 MAY 2002

{ $STAMP BS2}

StampWorks Manual Version 1.2 e Page 109

Experiment #17: Frequency Measurement

Thi s program monitors and di spl ays the frequency of a signal on Pin O.

FregPi n CON 0 ' frequency input pin
' Constants
OneSec CON 1000 ' one second - BS2
OneSec CON 2500 ' BS2sx
OneSec CON 3484 ' BS2p
Vari abl es
freq VAR Wor d frequency

Mai n:
COUNT FreqPin, OneSec, freq ' collect pulses for 1 second
DEBUG CLS, "Frequency: ", DEC freq, " Hz" ' display on DEBUG screen
GOTO Mai n ' do it again
END

Page 110 e StampWorks Manual Version 1.2

Experiment #17: Frequency Measurement

Behind The Scenes

In the previous experiment, several lines of code were used to count pulses on an input pin. That
method works when counting to a specific number. Other programs will want to count the number of
pulses that arrive during a specified time period. The BASIC Stamp’s COUNT function is designed for
this purpose.

The frequency of an oscillating signal is defined as the number of cycles per second and is expressed
in Hertz. The BASIC Stamp’s COUNT function monitors the specified pin for a given amount of time.
To create a frequency meter, the specified time window is set to 1000 milliseconds (one second).
Challenge

Improve the responsiveness (make it update more frequently) of this program by changing the

COUNT period. What other adjustment has to be made? How does this change affect the ability to
measure very low frequency signals?

StampWorks Manual Version 1.2 e Page 111

Experiment #18: Advanced Frequency Measurement

S’CamPW@'FkS Experiment #18:
| Advanced Frequency Measurement

This experiment uses PULSI N to create a responsive frequency meter.

New PBASIC elements/commands to know:

* PULSIN

Building The Circuit

Use the same circuit as in Experiment #18.

Pur pose. . .
Aut hor. . ..
E-mail....
Started...
Updat ed. . .

Ex18 - Freql n2. BS2
Frequency | nput

Par al | ax

st anpt ech@ar al | axi nc. com

01 MAY 2002

{ $STAVP BS2p}

Thi s program nmonitors and di spl ays the frequency of a signal on Pin O.

Const ant s

StampWorks Manual Version 1.2 e Page 113

Experiment #18: Advanced Frequency Measurement

Convert CON $0200 ' input to uSeconds (BS2)
Convert CON $00CC ' BS2sx
Convert CON $00C0 ' BS2p

' Vari abl es

pHi gh VAR Word ' high pulse width

pLow VAR Wor d ' low pul se width

peri od VAR Wor d ' cycle tine (high + | ow)

freq VAR Wor d ' frequency

Mai n:
PULSI N FreqPin, 0, pHigh ' get high portion of input
PULSIN FreqPin, 1, pLow ' get low portion of input
period = (pHi gh + pLow) */ Convert ' calculate cycle width in uSecs
freq = 50000 / period * 20 ' cal cul ate frequency

di spl ay on DEBUG screen

DEBUG Hone

DEBUG "Period. ", DEC period, " uS ", CR

DEBUG "Frequency... ", DEC freq, " Hz "

GOTO Mai n ' do it again

END
Behind The Scenes
In the last experiment, you learned that the frequency of a signal is defined as the number of cycles
per second. You created a simple frequency meter by counting the number of pulses (cycles) in one

second. This method works well, especially for low-frequency signals. There will be times, however,
when project requirements will dictate a quicker response time for frequency measurement.

Page 114 e StampWorks Manual Version 1.2

Experiment #18: Advanced Frequency Measurement

The frequency of a signal can be calculated from its period, or the time for one complete cycle.

|< period >|

By measuring the period of an incoming signal, its frequency can be calculated with the equation
(where the period is expressed in seconds):

frequency = 1 / period

The BASIC Stamp’s PULSI N function is designed to measure the width of an incoming pulse. By using
PULSI N to measure the high and low portions of an incoming signal, its period can be calculated and
the frequency can be determined. The result of PULSI N is expressed in units of two microseconds.
Thus, the formula for calculating frequency becomes:

frequency = 500,000 / period
This creates a problem for BASIC Stamp math though, as it can only deal with 16-bit numbers
(maximum value is 65,535). To fix the formula, we convert 500,000 to 50,000 x 10 and rewrite the
formula like this

frequency = 50,000 / period * 10

Run the program and adjust the 10K pot. Notice that the DEBUG screen is updated without delay and
that there is no “hunting” as when using COUNT to determine frequency.

StampWorks Manual Version 1.2 e Page 115

Experiment #19: A Light-Controlled Theremin

SJC SN2 Experiment #19
=il A Light-Controlled Theremin

This experiment demonstrates FREQOUT by creating a light-controlled Theremin (the first electronic
musical instrument ever produced).

Building The Circuit

0.1 uF

220

PO P1

Photoresistor

= Vss

Note: Later versions of the StampWorks lab board come with a built-in audio amplifier. Attach an 8-
ohm speaker to the output of the amplifier to get the best sound from this project.

File...... Ex19 - Therem n. BS2
Purpose... Sinple Digital Theremn
Aut hor. ... Parall ax

E-mail.... stanptech@arall axinc.com
Started...

Updated... 01 MAY 2002

{ $STAMP BS2}

' Program Description

StampWorks Manual Version 1.2 e Page 117

Experiment #19: A Light-Controlled Theremin

Thi s program uses RCTIME with a photocell to create a light-controlled
t herem n.

Speaker CON 0 ' piezo speaker output
PitchCirl CON 1 ' pitch control (RCTIME) input

Const ant s

Scal e CON $0100 ' divider for BS2/BS2e

' Scal e CON $0066 ' divider for BS2sx

' Scal e CON $0073 " divider for BS2p

Thr eshol d CON 200 ' cutoff frequency to play
Vari abl es

tone VAR Wor d ' frequency out put

Mai n:
H GH PitchCtrl ' di scharge cap
PAUSE 1 ‘" for 1 ns
RCTIME PitchCrl, 1, tone ' read the |ight sensor
tone = tone */ Scal e ' scal e input
IF (tone < Threshol d) THEN Main ' skip for anbient |ight
FREQOUT Speaker, 25, tone ' output the tone
GOTO Mai n
END

Page 118 e StampWorks Manual Version 1.2

Experiment #19: A Light-Controlled Theremin

Behind The Scenes

A Theremin is an interesting musical device used to create those weird, haunting sounds often heard
in old horror movies. This version uses the light falling onto a photocell to create the output tone.

Since the photocell is a resistive device, RCTI ME can be used to read its value. FREQOUT is used to
play the note. The constant, Thr eshol d, is used to control the cutoff point of the Theremin. When
the photocell reading falls below this value, no sound is played. This value should be adjusted to the
point where the Theremin stops playing when the photocell is not covered in ambient light.

Challenge

Add a second RC circuit using a 10K pot instead of a photocell. Use this circuit to adjust the threshold
value to varying light conditions.

StampWorks Manual Version 1.2 e Page 119

Experiment #20: Sound Effects

StampWearks Experiment #20
Sound Effects

This experiment uses FREQOUT and DTMFOUT to create a telephone sound effects machine.
New PBASIC elements/commands to know:
« DTvVFQUT

Building The Circuit

Optional Circuit

; 10 uF

Piezo i PO O 32 ohm

speaker

PO

Vss = Vss =

Note: Later versions of the StampWorks lab board come with a built-in audio amplifier. Attach an 8-
ohm speaker to the output of the amplifier to get the best sound from this project.

File...... Ex20 - Sound FX. BS2

Pur pose... Stanp-generated sounds

Aut hor. ... Parall ax
' E-mail.... stanptech@arall axinc.com
' Started...

' Updated... 01 MAY 2002

' [$STAWP BS2}

Thi s program denpnstrates several realistic and interesting sound effects
that can be generated by the BASIC Stanp usi ng FREQOQUT and DTMFQUT. This

StampWorks Manual Version 1.2 e Page 121

Experiment #20: Sound Effects

program wor ks best when pl ayed t hrough an anplifier.

Speaker CON 0 ' speaker on pin 0O

' Constants

R CON 0 rest

C CON 33 ' ideal is 32.703

Cs CON 35 ideal is 34.648

D CON 39 ' ideal is 38.891

E CON 41 ideal is 41.203

F CON 44 ' ideal is 43.654

Fs CON 46 " ideal is 46.249

G CON 49 ideal is 48.999

Gs CON 52 ideal is 51.913

A CON 55 ideal is 55.000

As CON 58 i deal is 58.270

B CON 62 ideal is 61.735

N1 CON 500 ' whol e note duration

N2 CON N1/ 2 " half note

N3 CON N1/ 3 ' third note

N4 CON N1/ 4 ' quarter note

N8 CON N1/ 8 ' eighth note

Scal eT CON $0100 ' time scale - BS2/BS2e

Scal eF CON $0100 ' frequency scale - BS2/BS2e

' Scal eT CON $0280 ' tinme scale - BS2sx

' Scal eF CON $0066 ' frequency scale - BS2sx
Scal eT CON $03C6 ' time scale - BS2p

' Scal eF CON $0043 ' frequency scale - BS2p

Page 122 e StampWorks Manual Version 1.2

Experiment #20: Sound Effects

X VAR Wor d ' loop counter

not el VAR Wor d " first tone for FREQOUT
not e2 VAR Wor d ' second tone for FREQOUT
onTi e VAR Wor d ' duration for FREQOUT
of f Ti me VAR Wor d

oct1l VAR Ni b ' octave for freql (1 - 8)
oct 2 VAR Ni b ' octave for freq2 (1 - 8)
eePtr VAR Byt e ' EEPROM poi nt er

digit VAR Byt e ' DTMF digit

clickDly VAR Wor d ' delay betweens "clicks"
' EEPROM Dat a

Phonel DATA "972-555-1212", O ' a stored tel ephone nunber
Phone2 DATA "916- 624- 8333", O ' anot her nunber

Mai n:
PAUSE 250
DEBUG CLS, "BASIC Stanp Sound FX Demp", CR, CR

Di al _Tone:
DEBUG "Di al tone", CR
onTime = 35 */ Scal eT
notel = 35 */ Scal eF
FREQOQUT Speaker, onTi ne, notel " "click"
PAUSE 100
onTi me = 2000 */ Scal eT
notel = 350 */ Scal eF
note2 = 440 */ Scal eF

FREQOUT Speaker, onTi ne, notel, note2 ' conbine 350 Hz & 440 Hz
Di al _Phonel: ' dial phone from EE

DEBUG "Di al i ng nunmber: "

eePtr = Phonel ‘" initialize eePtr pointer

GOSUB Di al _Phone
Phone_Busy:

PAUSE 1000
DEBUG CR, " - busy...", CR

StampWorks Manual Version 1.2 e Page 123

Experiment #20: Sound Effects

onTi me = 400 */ Scal eT
notel = 480 */ Scal eF
note2 = 620 */ Scal eF
FOR x =1 TO 8
FREQOUT Speaker, onTine, notel, note2
PAUSE 620
NEXT
onTime = 35 */ Scal eT
notel = 35 */ Scal eF
FREQOUT Speaker, onTi ne, notel
Di al _Phone2:
DEBUG "Cal | i ng Paral | ax: *
eePtr = Phone2
GOsUB Di al _Phone
Phone_Ri ngs:
PAUSE 1000
DEBUG CR, " - ringing"
onTi me = 2000 */ Scal eT
notel = 440 */ Scal eF
note2 = 480 */ Scal eF
FREQOUT Speaker, onTine, notel, note2
PAUSE 4000
FREQOUT Speaker, onTine, notel, note2
PAUSE 2000

Canpt own_Song:

DEBUG CR, "Play a Canmptown song", CR

FOR x = 0 TO 13
LOOXKUWPP x, [G G E, G A G E R E
LOOKUP x, [4, 4, 4, 4, 4, 4, 4, 1, 4
LOOKUP x, [N2, N2, N2, N2, N2, N2, N2
GOSUB Play_1 Note

NEXT

How er :

DEBUG "Howl er -- watch out!!!", CR

FOR x =1 TO 4
onTi ne = 1000 */ Scal eT
notel = 1400 */ Scal eF
note2 = 2060 */ Scal eF
FREQOUT Speaker, onTine, notel, note2
onTi ne = 1000 */ Scal eT
notel = 2450 */ Scal eF
note2 = 2600 */ Scal eF
FREQOUT Speaker, onTine, notel, note2

Page 124 e StampWorks Manual Version 1.2

conmbi ne 480 Hz and 620 Hz

"click"

conbi ne 440 Hz and 480 Hz

conbi ne 440 Hz and 480 Hz

R E D R], notel
1, 4, 4, 1], oct1l
N2, N1, N2, N2, N1, N8], onTine

conmbi ne 1400 Hz and 2060 Hz

conmbi ne 2450 Hz and 2600 Hz

Experiment #20: Sound Effects

NEXT

Roul ett e_Wheel :
DEBUG " Roul ette Weel ", CR
onTime =5 */ Scal eT
notel = 35 */ Scal eF
clickDly = 250
FOR x =1 TO 8
FREQOUT Speaker, onTi ne, notel
PAUSE cl i ckDly
clickDly = clickDy */ $00BF
NEXT
FOR x = 1 TO 10
FREQOUT Speaker, onTi ne, notel
PAUSE clickD'y
NEXT
FOR x = 1 TO 20
FREQOUT Speaker, onTi ne, notel
PAUSE clickD'y
clickDly = clickDy */ $010C
NEXT
FOR x = 1 TO 30
FREQOQUT Speaker, onTi ne, notel
PAUSE clickD'y
clickDly = clickDy */ $0119
NEXT

Comput er _Beeps:

DEBUG "50's Sci-Fi Conputer", CR

FOR x = 1 TO 50
onTine = 50 */ Scal eT
RANDOM not el
notel = (notel // 2500) */ Scal eF
FREQOQUT Speaker, onTi ne, notel
PAUSE 100

NEXT

Space_Transporter:
DEBUG " Space Transporter", CR
onTime = 10 */ Scal eT
FOR x = 5 TO 5000 STEP 5
notel = x */ Scal eF

FREQQUT Speaker, onTine, notel, notel */ 323

NEXT
FOR x = 5000 TO 5 STEP 50
notel = x */ Scal eF

FREQOUT Speaker, onTine, notel, notel */ 323

onTime for "click"

frequency for "click"
starting del ay between clicks
spin up wheel

click

accel erate (speed * 0.75)

spi n stable

sl ow down

decel erate (speed * 1.05)

sl ow down and stop

decel erate (speed * 1.10)

| ooks great with randmom LEDs
run about 5 seconds

create random note
don't let note go to high

play it
short pause between notes

frequency sweep up

frequency sweep down

StampWorks Manual Version 1.2 e Page 125

Experiment #20: Sound Effects

NEXT

DEBUG CR, "Sound denmp conplete."
I NPUT Speaker

END

Di al _Phone:
READ eePtr, digit
IF (digit = 0) THEN Di al _Exit
DEBUG di gi t
IF (digit < "0") THEN Next _Digit
onTine = 150 */ Scal eT
off Time = 75 */ Scal eT
DTMFQUT Speaker, onTine, offTime, [digit

Next _Digit:
eePtr = eePtr + 1
GOTO Di al _Phone

Dial Exit:
RETURN

Play 1 Note:
notel = notel << (octl - 1)
onTinme = onTinme */ Scal eT
notel = notel */ Scal eF
FREQOQUT Speaker, onTi ne, notel
RETURN

P

ay_2_ Notes:

notel = notel << (octl - 1)

note2 = note2 << (oct2 - 1)

onTime = onTine */ Scal eT

notel = notel */ Scal eF

note2 = note2 */ Scal eF

FREQOQUT Speaker, onTi ne, notel, note2
RETURN

Page 126 e StampWorks Manual Version 1.2

read a digit

when 0, nunber is done
di splay digit

don't dial non-digits

update eePtr pointer
get another digit

get frequency for note + octave

play it

get frequency for note + octave
get frequency for note + octave

pl ay both

Experiment #20: Sound Effects

Behind The Scenes

The a bit of programming creativity, the BASIC Stamp is able to create some very interesting sound
effects. Since most of the sounds we hear on the telephone (other than voice) are generated with
two tones, the BASIC Stamp’s FREQOUT and DTMFOUT functions can be used to generate telephone
sound effects.

DTMFQUT is actually a specialized version of FREQOUT. Its purpose is to play the dual-tones required
to dial a telephone. Instead of passing a tone (or tones), the digit(s) to be dialed are passed as
parameters. In actual dialing applications, the DTMF on-time and off-time can be specified to deal
with telephone line quality.

This program also presents the BASIC Stamp’s basic musical ability by playing a simple song.
Constants for note frequency (in the first octave) and note timing simplify the operational code. The
Pl ay_1 Note subroutine adjusts note frequency for the specified octave. The musical quality can
suffer a bit in the higher octaves because of rounding errors. Using the ideal values shown, the
constants table can be expanded to create accurate musical notes. Keep in mind that each octave
doubles the frequency of a note.

Octave 2 = Octave 1 * 2
Octave 3 = Octave 2 * 2
Octave 4 = Octave 3 * 2
And so on...

Challenge

Convert (a portion of) your favorite song to play on the BASIC Stamp.

StampWorks Manual Version 1.2 e Page 127

Experiment #21: Analog Input with PULSIN

S’camp\/\/@:rks Experiment #21

Analog Input with PULSIN

The experiment reads a resistive component using PULSI N and a free-running oscillator.

Building The Circuit (Note that schematic is NOT chip-centric)

45 /EE;’ Photoresistor

POCH—] 555 $ 1K
2

J: I 0.1 uF
= \/ss —_—

' File...... Ex21 - Anal ogl n. BS2
' Pur pose... Anal og input using PULSIN
' Aut hor. ... Parall ax
E-mail.... stanptech@arall axinc.com
Started. ..

Updated... 01 MAY 2002

{ $STAVP BS2}

Thi s program "reads" an anal og val ue by using that conponent to control the

StampWorks Manual Version 1.2 e Page 129

Experiment #21: Analog Input with PULSIN

out put frequency of a 555-based oscillator. PULSINis used to neasure the
hi gh portion of the signal as it is controlled by the varial be resi stance.

Pul sel nput CON 0
' Constants
P75 CON $00C0 ' 0.75
P50 CON $0080 ' 0.50
P25 CON $0040 ' 0.25
Vari abl es
r Val ue VAR Wor d ' raw val ue
sVal ue VAR Wor d ' snoot hed val ue

Mai n:
PULSI N Pul sel nput, 1, rValue ' get high portion of input
sValue = (rValue */ P25) + (sValue */ P75)
DEBUG Home
DEBUG "Raw value... ", DEC rVal ue, " ", CR
DEBUG "Filtered.... ", DEC sValue, " "
GOTO Mai n ' do it again
Behind The Scenes

In this experiment, the 555 is configured as an oscillator. Analyzing the output, the width of the low
portion of the output is controlled by the resistance of the photocell. By measuring the low portion of

Page 130 e StampWorks Manual Version 1.2

Experiment #21: Analog Input with PULSIN

the 555's output signal with PULSI N, the BASIC Stamp is able to determine the relative value of the
photocell.

Once the raw value is available, adding a portion of the raw value with a portion of the last filtered
value digitally filters it. The ratio of raw-to-filtered readings in this equation will determine the
responsiveness of the filter. The larger the raw portion, the faster the filter.

Challenge

Create a final output value that is scaled so that its range is between zero and 1000.

StampWorks Manual Version 1.2 e Page 131

Experiment #22: Analog Output with PWM

S’c 2] Experiment #22:
. P Analog Output with PWM

This program shows how create a variable voltage output with PWM.

New PBASIC elements/commands to know:
. PW

Building The Circuit

10K 1K
PO D_MTwi?’
0.1 uF

Vss =

Note that this circuit requires 12V. The only place you can get 12V on the StampWorks lab board is
from the +V screw terminal at the high-current driver location.

File...... Ex22 - Throb. BS2

Purpose... Qutput a variable voltage with PW/
Aut hor. ... Parall ax

E-mail.... stanptech@arall axinc.com
Started...

Updated... 01 MAY 2002

{ $STAMP BS2}

StampWorks Manual Version 1.2 e Page 133

Experiment #22: Analog Output with PWM

' Program Description

Thi s program denonstrates how the PWM command can be used with an opanp
' buffer to create a variable voltage output.

" I/O Definitions

D2Aout CON 0 ' anal og out pin
' Constants
OnTi e CON 10 ' 10 milliseconds, BS2
" OnTi ne CON 25 ' BS2sx
" OnTi me CON 15 ' BS2p
Vari abl es
| evel VAR Byt e ' anal og | evel

' Program Code

Mai n:

FOR | evel = 0 TO 255 ' increase voltage to LED
PWM D2Aout, |evel, OnTi ne

NEXT

PAUSE 250

FOR |l evel = 255 TO 0 ' decrease voltage to LED
PWM D2Aout, | evel, OnTi ne

NEXT

GOTO Mai n ' do it again

Page 134 e StampWorks Manual Version 1.2

Experiment #22: Analog Output with PWM

Behind The Scenes

While most BASIC Stamp applications will deal with digital signals, some will require analog output; a
variable voltage between zero and some maximum voltage. The BASIC Stamp’s PWM function is
designed to generate analog voltages when combined with an R/C filter. The PWM function outputs a
series of pulses which have a programmable on-time to off-time ratio (duty cycle). The greater the
duty cycle, the greater voltage output. A duty cycle of 255 will charge the capacitor to five volts.

In this experiment, one half of the LM358 is used to provide a buffered voltage to the LED. The op-
amp buffer prevents the capacitor from discharging too quickly under load. The LED brightness and
dims because the changing voltage through its series resistor changes the current through the LED.
Notice that the LED seems to snap on and get brighter, then dim to a level and snap off. This
happens when the output of the LM358 crosses the forward voltage threshold (the minimum voltage
for the LED to light) of the LED (about 1.8 volts).

Using the digital multimeter, monitor Pin 1 of the LM358.

StampWorks Manual Version 1.2 e Page 135

Experiment #23: Expanded Outputs

SeR Wty Experiment #23:
Expanding Outputs

This experiment demonstrates the expansion of BASIC Stamp outputs with a simple shift register.
Three lines are used to control eight LEDs with a 74x595 shift register.

New PBASIC elements/commands to know:
e SH FTQUT

Building The Circuit (Note that schematic is NOT chip-centric)

11 15 0! ;
PO DO———] ———O—wW—Pp—
P1 D 1 1 1?—%—”—4» ‘
12 2 2! |
P2 4(?—%—”—0 |

7 |

4 3 3l 510 \ |
10K H —Q—‘W\'—N—" g

c !

5 4 4! 510 \ ’ ;
Vss = 9 I i

5

StampWorks Manual Version 1.2 e Page 137

Experiment #23b: Expanded Outputs

File...... Ex23 - 74HC595. BS2

Pur pose... Expanded outputs with 74HC595
Aut hor. ... Parall ax

E-mail.... stanptech@arall axinc.com
Started...

' Updated... 01 MAY 2002

' {$STAWP BS2}

Thi s program denpstrates a sinple nethod of turning three Stanp lines into
' eight outputs with a 74HC595 shift register.

Cl ock CON 0 shift clock (74HC595. 11)
Dat aQut CON 1 ' serial data out (74HC595. 14)
Lat ch CON 2 ' output latch (74HC595. 12)

Constant s
Del ayTi nme CON 100
' Vari abl es
pattern VAR Byt e ' output pattern

Page 138 e StampWorks Manual Version 1.2

Experiment #23: Expanded Outputs

Initialize:
LOW Lat ch ' nmake output and keep | ow
pattern = %90000001

Go_For war d:
GOSUB CQut _595
PAUSE Del ayTi ne ' put pattern on 74x595
pattern = pattern << 1 ' shift pattern to the |eft
IF (pattern = %40000000) THEN Go_Rever se ' test for final position
GOTO CGo_For war d ' continue in this direction
Go_Rever se:

GOSUB CQut _595

PAUSE Del ayTi ne

pattern = pattern >> 1

IF (pattern = %90000001) THEN Go_Forward
GOTO CGo_Rever se

Qut _595:
SHI FTOQUT Dat aCut, C ock, MSBFirst, [pattern] ' send pattern to 74x595
PULSQUT Latch, 5 ' latch outputs
RETURN

Behind The Scenes

The BASIC Stamp is extraordinarily flexible in its ability to redefine the direction (input or output) of
its I/O pins, yet very few applications require this flexibility. For the most part, microcontroller
applications will define pins as either inputs or outputs at initialization and the definitions will remain
unchanged through the program.

StampWorks Manual Version 1.2 e Page 139

Experiment #23b: Expanded Outputs

We can use the fact that outputs are outputs and conserve valuable BASIC Stamp I/O lines at the
same time by using a simple component called a serial-in, parallel-out shift register. In this
experiment, the 74x595 is used. With just three BASIC Stamp lines, this program is able to control
eight LEDs through the 74x595.

The 74x595 converts a synchronous serial data stream to eight parallel outputs. Synchronous serial
data actually has two components: the serial data and a serial clock. The BASIC Stamp’s SHI FTOUT
command handles the details of the data and clock lines and writes data to a synchronous device, in
this case, the 74x595. With the 74x595, the data must be latched to the outputs after the shift
process. Latching is accomplished by briefly pulsing the Latch control line. This prevents the outputs
from “rippling” as new data is being shifted in.

Being serial devices, shift registers can be cascaded. By cascading, the BASIC Stamp is able to
control dozens of 74x595 outputs with the same three control lines. To connect cascaded 74x595s,
the clock and latch lines are all tied together and the SQ output from one stage connects to the serial
input of the next stage.

Page 140 e StampWorks Manual Version 1.2

Experiment #23b: Expanded Outputs

S’c ey Experiment #23b:
=l Expanding Outputs

This experiment demonstrates further expansion of BASIC Stamp outputs by cascading two 75x595
shift registers.

(Schematic on the next page)
Behind The Scenes

The 75x595 has a Serial Output pin (9) that allows the cascading of multiple devices for more
outputs. In this configuration, the Clock and Latch pins are shared to keep all devices synchronized.

When cascading multiple shift registers, you must send the data for the device that is furthest down
the chain first. Subsequent SHIFTOUT sequences will "push" the data through each register until the
data is loaded into the correct device. Applying the latch pulse at that point causes the new data in
all shift registers to appear at the outputs.

The demo program illustrates this point by independently displaying a binary counter and a ping-
pong visual display using two 75x595 shift registers and eight LEDs for each. Note that the counter
display is controlled by the 75x595 that is furthest from the BASIC Stamp, so its data is shifted out
first.

StampWorks Manual Version 1.2 e Page 141

Experiment #23b: Expanded Outputs

Building The Circuit (Note that schematic is NOT chip-centric)

PO

P1 D>

P2 D .

10K

MONOIT AN

OO OT A~

Page 142 e StampWorks Manual Version 1.2

Experiment #23b: Expanded Outputs

Pur pose. . .
Aut hor
E-mail....
Started...
' Updat ed. . .

Ex23b - 74HC595 x 2. BS2
Expanded out puts with 74HC595
Par al | ax

st anpt ech@ar al | axi nc. com

01 MAY 2002

' {$STAWP BS2}

Thi s program denpostrates a sinple nethod of
' 16 outputs with two 74HC595 shift
' 74HC595 is fed by the SGh output (pin 9) of

registers.

turning three Stanp lines into
The data lines into the second
the first. The clock and | atch

pins of the second 74HC595 are connected to the same pins on the first.

Dat aCut
Cd ock
Lat ch

serial data out (74HC595. 14)
shift clock (74HC595. 11)
out put | atch (74HC595. 12)

Const ant s

pattern
count er

CON 0
CON 1
CON 2
CON 100
VAR Byt e
VAR Byt e

out put pattern

StampWorks Manual Version 1.2 e Page 143

Experiment #23b: Expanded Outputs

Initialize:
LOW Lat ch ' nmake output and keep | ow
pattern = %90000001

CGo_Forwar d:
counter = counter + 1 ' update counter
GOSUB Qut _595
PAUSE Del ayTi ne ' put pattern on 74x595
pattern = pattern << 1 ' shift pattern to the |eft
IF (pattern = 9%40000000) THEN Go_Rever se ' test for final position
GOTO Go_Forward ' continue in this direction
Go_Rever se:

counter = counter + 1

GOSUB Qut _595

PAUSE Del ayTi ne

pattern = pattern >> 1

IF (pattern = 9%90000001) THEN Go_Forward
GOTO CGo_Rever se

Qut _595:
SHI FTOUT Dat aCut, C ock, MSBFirst, [counter] ' send counter to 2nd 74HC595
SHI FTOQUT Dat aCut, Cl ock, MSBFirst, [pattern] ' send pattern to 1st 74HC595
PULSQUT Latch, 5 ' latch outputs
RETURN

Page 144 e StampWorks Manual Version 1.2

Experiment #24: Expanding Inputs

SETRRAENR Experiment #24:
" Expanding Inputs

This experiment demonstrates the expansion of BASIC Stamp inputs with a simple shift register.
Three lines are used to read an eight-position DIP-switch.

New PBASIC elements/commands to know:

* SHFTIN

Building The Circuit (Note that schematic is NOT chip-centric)

| i
i
+5 § *+5 |
| I
= 02 2 3 % % %2 % %1k |
i S $ $ 3 3 2 2 32 i
| :
7 ? E
P3 31— 46_ \S— W, W, W, W, — Y i
i
1 5 |
P4 [O— 4(5— —TTTT—"* f
7 ! ;
4 E i
H 46_ |\ Wy \ W— —e i
i
Cc § E
1 46_,_,_,_" |
6 ; g
5 ! |
4é_ N—t—® i
i i
| E
46— —e {
é §
5 E
4(5—0 i
|
i O Y IR R IESTTIUEN FUTTY DI (.
P o
ls J: . o ‘\ <\ ‘\ 0\ 0\ ‘\ ‘\ 0\ | E
Li. I IIIl1Iilzl
— - - - — — — — t
| g
i s s s o s s s s i s i s i U U o s sk

StampWorks Manual Version 1.2 e Page 145

Experiment #24b: Expanded Inputs

File...... Ex24 - 74HC165. BS2

Pur pose... Input expansion with 74HCL65
Aut hor. ... Parall ax

E-mail.... stanptech@arall axinc.com
Started...

' Updated... 01 MAY 2002

' {$STAWP BS2}

Thi s program shows how to read eight inputs with just three Stanp pins using
' a 74HC165 shift register.

Cl ock CON 0 shift clock (74x165. 2)
Dat al n CON 3 ' shift data (74x165.7)
Load CON 4 ' input |oad (74x165.1)

Initialize:
H GH Load ' nmake output; initialize to 1

Page 146 e StampWorks Manual Version 1.2

Experiment #24: Expanding Inputs

Mai n:
GOSUB Read_165 ' read 8-pos dip switch
DEBUG Home, "Switches = ", BIN8 swi tches ' display binary node
PAUSE 100
GOTO Mai n ' do it again

Read_165:
PULSQUT Load, 5 ' grab the switch inputs
SHI FTI N Dataln, C ock, MSBPre, [switches] ' shift themin
RETURN

Behind The Scenes

The experiment demonstrates SHI FTI N, the complimentary function to SHI FTOUT. In this case, three
BASIC Stamp I/O lines are used to read the state of eight input switches. To read the data from the
74x165, the parallel inputs are latched by briefly pulsing the Load line, then using SHI FTI N to move
the data into the BASIC Stamp.

Note that the DIP-switches are pulled-up to Vdd, so setting them to "ON” creates a logic low input to

the shift register. By using the Q\ (inverted) output from the 74x165, the data arrives at the BASIC
Stamp with Bit 1 indicating a switch is on.

StampWorks Manual Version 1.2 e Page 147

Experiment #24b: Expanding Inputs

NETRAEIS Experiment #24b:
.I Expanding Inputs

This experiment demonstrates further expansion of BASIC Stamp inputs by cascading two shift
registers.

(Schematic on next page)
Behind The Scenes

This program is very similar to 23b in that the Serial Output (pin 9) from one shift register is fed into
the Serial input (pin 10) of the next device up the chain. Note that the non-inverted output is used
on the second 74x165 because the inverted output of the deice connected directly to the BASIC
Stamp will take care of the inversion.

In the program the Read_165 subroutine has been updated to accommodate the second 74x165.
The first SHIFTIN loads the data from the "buttons" shift register into the BASIC Stamp and
transfers the contents from the "switches" shift register into the "buttons" shift register. The second
SHIFTIN loads the "switches" data into the BASIC Stamp.

StampWorks Manual Version 1.2 e Page 149

Experiment #24b: Expanded Inputs

Building The Circuit (Note that schematic is NOT chip-centric)

+5 +5
16
T S s b3 < s < < 9
3 3 3 3 3 3 3 3™
PO > 2 UO_.’_/;/_/_/_/_/_“
P3 G—’—7 uo_/_/_r_r_r_r_“
P4 > 1 uo_/_/_r_f_r_‘,
7 .
; IR =5 N N N N
c ;
1 uo_/;/;/_“
6 i
5 4 DS L4
—o_f
5 D&)
10 [D7
———0—
[« o o o [o [« o
TT pop g b ch en b ol
— = Vss
+5 ' +5
LG 2 2 2 2 2 2 & 2
. % $ 2 8 % 3 3 g™
9 uo_/_/_/_/_r_/_“
1 uc_r_r_r_r_r_“
7 ;
: IR =5 S N N N
c ;
1 2 oel {4
6 :
5 4 DS L4
—o_l
5 D6
——O0——*
6 D7

.||—ou
i—
Il—o ° o
I 0 o
I 0 o
iIl—o 0 o
I 0 o
I 0 o
- 0 o
i »

Page 150 e StampWorks Manual Version 1.2

Experiment #24b: Expanding Inputs

' File...... Ex24b - 74HC165 x 2. BS2

' Pur pose... Input expansion with 74HCL65
' Aut hor. ... Parall ax

' E-mail.... stanptech@arall axinc.com

' Started...

' Updated... 01 MAY 2002

' {$STAWP BS2}

Thi s program shows how to read 16 inputs with just three Stanmp pins using
' two 74HC165 shift registers. The serial output (pin 9) fromone 74HC165
' is fed into the serial input (pin 10) of the second.

Cl ock CON 0 " shift clock (74x165. 2)
Dat al n CON 3 ' shift data (74x165.7)
Load CON 4 ' input |oad (74x165.1)

' Vari abl es
swi t ches VAR Byt e ' inputs sw tches
but t ons VAR Byt e ' push button inputs

Initialize:
H GH Load ' nmake output; initialize to 1

StampWorks Manual Version 1.2 e Page 151

Experiment #24b: Expanded Inputs

Mai n:
GOSUB Read_165
DEBUG Hone
DEBUG "Buttons = ", BIN8 buttons, CR
DEBUG "Swithces = ", BIN8 sw tches
PAUSE 100
GOTO Mai n

Read_165:
PULSQUT Load, 5
SHI FTIN Dataln, d ock, MSBPre, [buttons]

SHI FTIN Dataln, C ock, MSBPre, [sw tches]

RETURN

Page 152 e StampWorks Manual Version 1.2

read switches and buttons

di spl ay binary node

do it again

latch inputs
get buttons
get switches

Experiment #25: Hobby Servo Control

SeR Wty Experiment #25:
Hobby Servo Control

This experiment demonstrates the control of a standard hobby servo. Hobby servos frequently are
used in amateur robotics.

New PBASIC elements/commands to know:
« SDEC, SDEC1 - SDEC16 (DEBUG nodifier)

Building The Circuit

+5 +5

I

L.

PO

P1

Vss

P2 D>——
(red) —‘ SERVO

(black)
Vss =
' File...... Ex25 - Servo. BS2
' Pur pose... Hobby Servo Control
' Aut hor. ... Parall ax
' E-mail.... stanptech@arall axinc.com
' Started...

' Updated... 01 MAY 2002

' [$STAWP BS2}

StampWorks Manual Version 1.2 e Page 153

Experiment #25: Hobby Servo Control

' Program Description

Thi s program shows how to control a standard servo with the BASI C Stanp.

Pot CW CON 0 " cl ockwi se pot input

Pot CCW CON 1 ' counter-cl ockw se pot input
Servo CON 2 ' servo control pin

' Constants

Scal e CON $0068 ' scale RCTIME to O - 250, BS2
' Scale CON $002C ' BS2sx

' Scal e CON $002A ' BS2p

' Vari abl es

rcRt VAR Wor d ' rc reading - right

rcLf VAR Word ‘" rc reading - |eft

diff VAR Wor d ' difference between readi ngs
sPos VAR Wrd ' servo position

Mai n:
H GH Pot CW ' di scharge caps
H GH Pot CCW
PAUSE 1

Page 154 e StampWorks Manual Version 1.2

Experiment #25: Hobby Servo Control

RCTI ME PotCW 1, rcRt ' read cl ockw se

RCTI ME Pot CCW 1, rclLf ' read counter-clockw se

rcRt = (rcRt */ Scale) MAX 250 ' scale RCTIME to 0-250

rcLf = (rcLf */ Scale) MAX 250

sPos = rcRt - rclLf ' calculate position (-250 to 250)
PULSQUT Servo, (750 + sPos) ' nove the servo

PAUSE 20

GOTO Mai n

Behind The Scenes

Hobby servos are specialized electromechanical devices used most frequently to position the control
surfaces of model aircraft. The position of the servo output shaft is determined by the width of an
incoming control pulse. The control pulse is typically between one and two milliseconds wide. The
servo will center when the control signal is 1.5 milliseconds. In order to maintain its position, the
servo must constantly be updated. The typical update frequency is about 50 times per second.

The BASIC Stamp’s PULSOUT command is ideal command for controlling hobby servos. In this
experiment, two RCTI ME circuits are constructed around the 10K potentiometer. This circuit and the
project code can be used to determine the relative position of the potentiometer. The readings from
each side of the potentiometer are scaled between 0 and 250 with the */ and MAX operators. By
subtracting one side from the other, a servo position value between —250 and +250 is returned.

This value is added to the centering position of 750. Remember that PULSOUT works in two-
microsecond units, so a PULSOUT value of 750 will create a pulse that is 1.5 milliseconds wide,
causing the servo to center. When the servo position is —250, the PULSQUT value is 500, creating a
1.0-millisecond pulse. At an sPos value of +250, the PULSQUT value is 1000, creating a 2.0
millisecond control pulse.

This code demonstrates that the BASIC Stamp does, indeed, work with negative numbers. You can
see the value of sPos by inserting this line after the calculation:

DEBUG Home, "Position: ", SDEC sPos, " "

Negative numbers are stored in two’s compliment format. The SDEC (signed decimal) modifier prints
standard decimal with the appropriate sign.

StampWorks Manual Version 1.2 e Page 155

Experiment #25: Hobby Servo Control

Challenge

Replace the potentiometer with two photocells and update the code to cause the servo to center at
the brightest light source.

Page 156 e StampWorks Manual Version 1.2

Experiment #26: Stepper Motor Control

SfamPW@'l’kS Experiment #26:

Stepper Motor Control

This experiment demonstrates the control of a small 12-volt unipolar stepper motor. Stepper motors
are used as precision positioning devices in robotics and industrial control applications.

New PBASIC elements/commands to know:
e ABS

Building The Circuit

brown
green
red
white
black

ULN2003

StampWorks Manual Version 1.2 e Page 157

Experiment #26: Stepper Motor Control

' File...... Ex26 - Stepper.BS2

' Pur pose... Stepper Mtor Control

' Aut hor. ... Parall ax

' E-mail.... stanptech@arall axinc.com
' Started...

' Updated... 01 MAY 2002

' {$STAWP BS2}

Thi s program denonstrates uni pol ar stepper notor control. The pot allows the
programto control speed and direction of the notor.

" 1/O Definitions

Pot CW CON 0 ' cl ockwi se pot input

Pot CCW CON 1 ' counter-cl ockwi se pot i nput
Coi | s VAR Qut B ' output to stepper coils

' Constants

Scal e CON $0100 ' scale for BS2 (1.0)

' Scal e CON $0080 ' scale for BS2sx, BS2p (0.5)
' Vari abl es

Page 158 e StampWorks Manual Version 1.2

Experiment #26: Stepper Motor Control

speed VAR Wor d ' del ay between steps

X VAR Byt e ' loop counter

sAddr VAR Byt e ' EE address of step data
rcRt VAR Wor d ' rc reading - right

rcLf VAR Wor d ''rc reading - left

diff VAR Wor d ' difference between readi ngs
' EEPROM Dat a

' ABAB

Stepl DATA %4100 ' A on B on Al off B\ off
St ep2 DATA %9110 ' Aoff B on A\ on B\ of f
St ep3 DATA %9011 " Aoff Boff A on B\ on
St ep4 DATA %4001 ' A on B off A\ off B\ on

Initialize:
DirB = %4111 ' nmake stepper pins outputs
speed = 5 ' set starting speed

Mai n:
FOR x = 1 TO 100 ' 1 rev forward
GOSUB St ep_Fwd
NEXT
PAUSE 200

FOR x = 1 TO 100 ' 1 rev back
GOSUB St ep_Rev

NEXT

PAUSE 200

St ep_Deno:
Hl GH Pot CW ' discharge caps

StampWorks Manual Version 1.2 e Page 159

Experiment #26: Stepper Motor Control

HI GH Pot CCW
PAUSE 1
RCTI ME PotCW 1, rcRt ' read cl ockw se
RCTI ME Pot CCW 1, rclLf ' read counter-clockw se
rcRt = (rcRt */ Scale) MAX 600 ' set speed limts
rcLf = (rcLf */ Scale) MAX 600
diff = ABS(rcRt - rcLf) ' get difference between readi ngs
IF (diff < 25) THEN Step_Deno ' all ow dead band
IF (rcLf > rcRt) THEN Step_CCW
Step_CW
speed = 60 - (rcRt / 10) ' cal cul ate speed
GOSUB St ep_Fwd ' do a step

GOTO St ep_Deno
St ep_CCW
speed = 60 - (rcLf / 10)

GOSUB St ep_Rev
GOTO St ep_Denmo

St ep_Fwd:
sAddr = sAddr + 1 // 4 ' point to next step
READ (Stepl + sAddr), Coils ' output step data
PAUSE speed ' pause between steps
RETURN

Step_Rev:
SAddr = sAddr + 3 // 4 ' point to previous step
READ (Stepl + sAddr), Coils
PAUSE speed
RETURN

Page 160 e StampWorks Manual Version 1.2

Experiment #26: Stepper Motor Control

Behind The Scenes

Stepper motors differ from standard DC motors in that they do not spin freely when power is applied.
For a stepper motor to rotate, the power source must be continuously pulsed in specific patterns.
The step sequence (pattern) determines the direction of the stepper’s rotation. The time between
sequence steps determines the rotational speed. Each step causes the stepper motor to rotate a fixed
angular increment. The stepper motor supplied with the StampWorks kit rotates 3.6 degrees per
step. This means that one full rotation (360 degrees) of the stepper requires 100 steps.

The step sequences for the motor are stored in DATA statements. The St epFwd subroutine will read
the next sequence from the table to be applied to the coils. The St epRev subroutine is identical
except that it will read the previous step. Note the trick with the modulus (//) operator used in
St epRev. By adding the maximum value of the sequence to the current value and then applying the
modulus operator, the sequence goes in reverse. Here’s the math:

0+3//4=3
3+3//4=2
2+3//4=1
1+3//4=0

This experiment reads both sides of the 10K potentiometer to determine its relative position. The
differential value between the two readings is kept positive by using the ABS function. The position is
used to determine the rotational direction and the strength of the position is used to determine the
rotational speed. Remember, the shorter the delay between steps, the faster the stepper will rotate.
A dead-band check is used to cause the motor to stop rotating when the RCTI ME readings are nearly
equal.

Challenge
Rewrite the program to run the motor in 200 half steps. Here’s the step sequence:

Stepl = %1000
Step2 = %1100
Step3 = %0100
Step4 = %0110
Step5 = %0010
Step6 = %0011
Step7 = %0001
Step8 = %1001

StampWorks Manual Version 1.2 e Page 161

Experiment #27: Voltage Measurement

StampWerks Experiment #27:
| Voltage Measurement

This experiment demonstrates the use of an analog-to-digital converter to read a variable voltage
input.

Building The Circuit (Note that schematic is NOT chip-centric)

+5 +5 t‘i-’
1|
6 j————n
PO C—— & ?
7 2
P1 O>— ADco831 43—>:E
1 o—7% |
P2 >— T
VR-10K
IRE
= = = Vss
File...... Ex27 - ADC0831. BS2
Purpose... Analog to Digital conversion
Aut hor. ... Parall ax
E-mail.... stanptech@arall axinc.com
Started. ..

Updated... 01 MAY 2002

{ $STAVP BS2}

' This program deonstrates reading a variable voltage with an ADCO831 anal og-
to-digital convertor chip.

StampWorks Manual Version 1.2 e Page 163

Experiment #27: Voltage Measurement

" 1/O Definitions

A2Ddat a CON 0 ' AD data |ine

A2Dcl ock CON 1 ' A/ D clock

A2Dcs CON 2 ' A/D chip select (low true)
' Vari abl es

resul t VAR Byt e ' result of conversion

mvol t s VAR Wor d ' convert to mllivolts

Initialize:
H GH A2Dcs

Mai n:
GOSUB Read_ 0831
mVolts = result */ $139C ' 'x 19.6 (mv / unit)
DEBUG Hone
DEBUG " ADC. ", DEC result, " ", CR
DEBUG "volts... ", DEC nVolts DIG 3, ".", DEC3 nVolts
PAUSE 100 ' del ay between readings
GOTO Mai n ' do it again

Page 164 e StampWorks Manual Version 1.2

Experiment #27: Voltage Measurement

Read_0831:
LOW A2Dcs
SHI FTI N A2Ddat a, A2Dcl ock, MsSBPost, [result\9]
H GH A2Dcs
RETURN

Behind The Scenes

Previous projects have used RCTI ME to read resistive components. This is a form of analog input, but
isnt voltage measurement. For that, the BASIC Stamp needs help from an external device. The
simplest way to measure a variable voltage is with an analog-to-digital converter.

In this experiment, the National Semiconductor ADC0831 is used to convert a voltage (0 — 5) to a
synchronous serial signal that can be read by the BASIC Stamp with SHI FTI N. The nature of the
ADCO0831 requires nine bits to shift in the result. This is no problem for the BASIC Stamp as the
SHI FTI N function allows the number of shifted bits to be specified.

The eight-bit result will be from zero (zero volts) to 255 (five volts). Dividing five (volts) by 255, we
find that each bit in the result is equal to 19.6 millivolts. For display purposes, the result is converted
to millivolts by multiplying by 19.6 (result */ $139C). A neat trick with DEBUG is used to display the
variable, mvol ts. The “DI G 3" operation prints the whole volts and the DEC3 modifier prints the
fractional volts.

Challenge

Connect the output of Experiment 22 (Pin 1 of the LM358) to the input of the ADC0831. Write a
program to create a voltage using PWM and read it back with the ADC0831.

StampWorks Manual Version 1.2 e Page 165

Experiment #28: Temperature Measurement

S’camp\/\fc.ﬂ:rks Experiment #28:
| Temperature Measurement

This experiment demonstrates the use of a digital temperature sensor. Temperature measurement is
a necessary component of environmental control applications (heating and air conditioning).

Building The Circuit (Note that schematic is NOT chip-centric)

+5

]

Updated... 01 MAY 2002

1Ky
POOO—WNV——
2
P1 [O>—— DS1620
3
POD—
r
' File...... Ex28 - DS1620. BS2
' Pur pose. .. Tenperature neasurenent
' Aut hor. ... Parall ax
' E-mail.... stanptech@arall axinc.com
' Started. ..

{ $STAMP BS2}

' This program nmeasures tenperature using the Dallas Seniconductor DS1620
t enper at ure sensor.

StampWorks Manual Version 1.2 e Page 167

Experiment #28: Temperature Measurement

DQ CON 0 ' DS1620.1 (data I/ 0O
Cl ock CON 1 ' DS1620. 2
Reset CON 2 ' DS1620. 3
' Constants
RdTnmp CON $AA ' read tenperature
W Hi CON $01 " wite TH (high tenp)
W Lo CON $02 "'wite TL (|l ow tenp)
RdHi CON $AL ' read TH
RdLo CON $A2 ' read TL
StartC CON $EE ' start conversion
St opC CON $22 ' stop conversion
W Cfg CON $0C ' wite config register
RdCf g CON $AC ' read config register
Vari abl es
tenpl n VAR Word ' raw tenperature
sign VAR tenpln.Bit8 ' 1 = negative tenperature
tSign VAR Bi t
tenmpC VAR Wor d ' Cel sius
t enpF VAR Wor d ' Fahrenhei t
" Initialization
Initialize:
Hl GH Reset ' alert the DS1620
SHI FTOUT DQ C ock, LSBFirst, [WCfg, 9%0] ' use with CPU; free-run
LOW Reset
PAUSE 10
H GH Reset
SHI FTOUT DQ d ock, LSBFirst, [Start(] ' start conversions
LOW Reset

Page 168 e StampWorks Manual Version 1.2

Experiment #28: Temperature Measurement

Mai n:
GOSUB Get _Tenper at ure
DEBUG Hone
DEBUG " DS1620", CR
DEBUG " - - - - - - " R

DEBUG SDEC tenpC, " C "
DEBUG SDEC tenpF, " F "

PAUSE 1000
GOTO Mai n

' read the DS1620

pause between readi ngs

Cet _Tenper at ur e:
Hl GH Reset

SHI FTOUT DQ C ock, LSBFI RST,

SHI FTIN DQ d ock, LSBPRE,
LOW Reset

tSign = sign
tenmpln = tenpln / 2

IF (tSign = 0) THEN No_Negl

templn = tenpln | $FFOO

No_Neg1l:
tenpC = tenpln
tenpln = tenpln */ $01CC

IF (tSign = 0) THEN No_Neg2

tenpln = tenpln | $FFO0

No_Neg2:
tenpln = tenpln + 32
tenpF = tenpln
RETURN

[RdTnp]
[tenpl n\ 9]

alert the DS1620

gi ve command to read tenp
read it in

rel ease the DS1620

save sign bit
round to whol e degrees

extend sign bits for negative

save Cel sius val ue
multiply by 1.8
if negative, extend sign bits

finish C-> F conversion
save Fahrenheit val ue

StampWorks Manual Version 1.2 e Page 169

Experiment #28: Temperature Measurement

Behind The Scenes

The largest organ of the human body is the skin and it is most readily affected by temperature. Little
wonder then that so much effort is put into environmental control systems (heating and air
conditioning).

This experiment uses the Dallas Semiconductor DS1620 digital thermometer/thermostat chip. This
chip measures temperature and makes it available to the BASIC Stamp through a synchronous serial
interface. The DS1620 is an intelligent device and, once programmed, is capable of stand-alone
operation using the T(com), T(hi) and T(lo) outputs.

The DS1620 requires initialization before use. In active applications like this, the DS1620 is
configured for free running with a CPU. After the configuration data is sent to the DS1620, a delay of
10 milliseconds is required so that the configuration can be written to the DS1620’s internal EEPROM.
After the delay, the DS1620 is instructed to start continuous conversions. This will ensure a current
temperature reading when the BASIC Stamp requests it.

To retrieve the current temperature, the Read Temperature ($AA) command byte is sent to the
DS1620. Then the latest conversion value is read back. The data returned is nine bits wide. Bit8
indicates the sign of the temperature. If negative (sign bit is 1), the other eight bits hold the two’s
compliment value of the temperature. Whether negative or positive, each bit of the temperature is
equal to 0.5 degrees Celsius.

The Celsius temperature is converted to whole degrees by dividing by two. If negative, the upper-
byte bits are set to 1 so that the value will print properly with SDEC (signed numbers in the BASIC
Stamp must be 16 bits in length). The temperature is converted to Fahrenheit using the standard
formula:

F=(C*1.8)+32
Challenge

Rewrite the program to write the temperature values to the StampWorks LCD module.

Page 170 e StampWorks Manual Version 1.2

Experiment #29: Advanced 7-Segment Multiplexing

StamPWﬂ'l’kS Experiment #29:
.. Advanced 7-Segment Multiplexing

This experiment demonstrates the use of seven-segment displays with an external multiplexing
controller. Multi-digit seven-segment displays are frequently used on vending machines to display the
amount of money entered.

Building The Circuit (Note that schematic is NOT chip-centric)

!
!
!
!
!
!
!
!

AAA
A AAJ

>

PO G—Doé_r_r_r
I
!

P1 G—mé_/_/_/

|

|
D2
P2 C———O——7—#

StampWorks Manual Version 1.2 e Page 171

Experiment #29: Advanced Seven-Segment Multiplexing

+5 +5
10K
18 19 . !
1 14 Al
P7 49
13 16 B!

P6 [——O0
o 12 20 C

10K {

O=aPNNXDZ

DIGIT 4
7 T

DIGIT 3
11
DIGIT 2
2
> DIGIT 1
4 9
Vss Vss

Page 172 e StampWorks Manual Version 1.2

Experiment #29: Advanced 7-Segment Multiplexing

File...... Ex29 - Change Counter.BS2

Purpose... Controlling 7-segnent displays with MAX7219
Aut hor. ... Parallax

E-mail.... stanptech@arall axinc.com

Started. ..

Updated... 01 MAY 2002

{ $STAWP BS2}

This programis a coin counter -- it will count pennies, nickels, dimes and
quarters using pushbutton inputs. The "bank" is displayed on four 7-segnent
LED di spl ays that are controlled with a MAX7219.

Dat aPi n CON 7 data pin (MAX7219. 1)

Cl ock CON 6 cl ock pin (MAX7219. 13)
Load CON 5 | oad pin (MAX7219.12)

Coi ns VAR I nL coin count inputs

' Constants

Decode CON $09 bcd decode register

Brite CON $0A intensity register

Scan CON $0B scan limt register

Shut Dn CON $0C shut down register (1 = on)
Test CON $OF di spl ay test node

StampWorks Manual Version 1.2 e Page 173

Experiment #29: Advanced Seven-Segment Multiplexing

DecPnt CON 2940000000
Bl ank CON %111 ' blank a digit
Yes CON 1
No CON 0
' Vari abl es
noney VAR Word ' current noney count
deposi t VAR Byt e ' coins deposited
penny VAR deposit.Bit0 ' bit values of deposit
ni ckel VAR deposit.Bitl
di me VAR deposit.Bit2
quarter VAR deposit.Bit3
dol | ar VAR deposit.Bit4
digit VAR Ni b ' display digit
d7219 VAR Byt e ' data for MAX7219
i ndex VAR Ni b " | oop counter
i dxOdd VAR i ndex.BitO ' is index odd? (1 = yes)
' EEPROM Dat a
' Segnents . abcdef g
Ful | DATA %91000111 " F
DATA 290111110 " U
DATA %90001110 "L
DATA %90001110 "L
Initialization
Initialize:
DrL = 9411100000 ' data, clock and | oad as outs

coins as inputs
FOR index = 0 TO 7

LOOKUP i ndex, [Scan, 3, Brite, 5, Decode, $0F, ShutDn, 1], d7219
SHI FTQUT Dat aPi n, C ock, MSBFirst, [d7219]

Page 174 e StampWorks Manual Version 1.2

Experiment #29: Advanced 7-Segment Multiplexing

IF (idxOdd = No) THEN No_Load
PULSQUT Load, 5 ' | oad paraneter

No_Load:
NEXT

GOSUB Show_The_Money

Mai n:
GOSUB Get _Coi ns
I F (deposit = 0) THEN Main ' wait for coins
noney = noney + (penny * 1) ' add coins
noney = noney + (nickel * 5)
noney = noney + (dinme * 10)
noney = noney + (quarter * 25)
noney = noney + (dollar * 100)
GOSUB Show_The_Money ' update the display
PAUSE 100
GOTO Mai n
Subr out i nes
Get _Coi ns:
deposit = 990011111 ' enable all coin inputs
FOR index = 1 TO 10
deposit = deposit & ~Coins ' test inputs
PAUSE 5 ' delay between tests
NEXT
RETURN

Show_The_Mbney:
I F (nmoney >= 9999) THEN Show_Ful |
FOR index = 4 TO 1
d7219 = Bl ank
IF ((index = 4) AND (nobney < 1000)) THEN Put _Digit
d7219 = noney DI G (i ndex - 1)

StampWorks Manual Version 1.2 e Page 175

Experiment #29: Advanced Seven-Segment Multiplexing

IF (index <> 3) THEN Put_Digit
d7219 = d7219 | DecPnt ' decimal point on DDA T 3

Put Digit:
SHI FTQUT Dat aPi n, C ock, MSBFirst, [index, d7219]
PULSQUT Load, 5
NEXT
RETURN

Show_Ful | :

turn BCD decodi ng of f

SHI FTQUT Dat aPi n, C ock, MSBFirst, [Decode, 0]

PULSQUT Load, 5

FOR index = 4 TO 1
READ (4 - index + Full), d7219 ' read and send letter
SHI FTQUT Dat aPi n, C ock, MSBFirst, [index, d7219]
PULSQUT Load, 5

NEXT

END
Behind The Scenes

Multiplexing multiple seven-segment displays requires a lot of effort that consumes most of the
computational resources of the BASIC Stamp. Enter the MAXIM MAX7219 LED display driver. Using
just three of the BASIC Stamp’s I/0O lines, the MAX7219 can be used to control up to eight, seven-
segment displays or 64 discrete LEDs (four times the number of I/O pins available on the BASIC
Stamp).

The MAX7219 connects to the LED displays in a straightforward way; pins SEG A through SEG G and
SEG DP connect to segments A through G and the decimal point of all of the common-cathode
displays. Pins DIGIT 0 through DIGIT 7 connect to the individual cathodes of each of the displays. If
you use less than eight digits, omit the highest digit numbers. For example, this experiment uses four
digits, numbered 0 through 3, not 4 through 7.

The MAX7219 has a scan-limit feature than limits display scanning to digits 0 through n, where nis

the highest digit number. This feature ensures that the chip doesn't waste time and duty cycles
(brightness) trying to scan digits that aren't there.

Page 176 e StampWorks Manual Version 1.2

Experiment #29: Advanced 7-Segment Multiplexing

When the MAX7219 is used with seven-segment displays, it can be configured to automatically
convert binary-coded decimal (BCD) values into appropriate patterns of segments. This makes the
display of decimal numbers simple. The BCD decoding feature can be disabled to display custom
patterns. This experiment does both.

From a software standpoint, driving the MAX7219 requires the controller to:

Shift 16 data bits out to the device, MSB first.
Pulse the Load line to transfer the data.

Each 16-bit data package consists of a register address followed by data to store to that register. For
example, the 16-bit value $0407 (hex) writes a “7" to the fourth digit of the display. If BCD decoding
is turned on for that digit, the numeral “7” will appear on that digit of the display. If decoding is not
turned on, three LEDs will light, corresponding to segments G, F, and E.

In this experiment, the MAX7219 is initialized to:

Scan = 3 (Display digits 0 — 3)
Brightness = 5

Decode = $0F (BCD decode digits 0 — 3)
Shutdown = 1 (normal operation)

Initialization of the MAX7219 is handled by a loop. Each pass through the loop reads a register
address or data value from a LOOKUP table. After each data value is shifted out, the address and data
are latched into the MAX7219 by pulsing the Load line.

Most of the work takes place in the subroutine called Show The_ Money. When the money count is
less than 9999, the value will be displayed on the seven-segment digits, otherwise the display will
read “FULL.” The routine scans through each digit of money and sends the digit position and value
(from the DI G operator) to the MAX7219. Since the display shows dollars and cents, the decimal
point on the third digit is enabled. When the position and digit have been shifted out, the display is
updated by pulsing the Load line. To keep the display neat, the leading zero is blanked when the
money value is less than 1000.

When the value of money reaches 9999, the display will change to “FULL.” This is accomplished by

disabling the BCD decoding of the MAX7219 and sending custom letter patterns to the MAX7219.
These patterns are stored in DATA statements.

StampWorks Manual Version 1.2 e Page 177

Experiment #29: Advanced Seven-Segment Multiplexing

The main loop of the program is simple: it scans the switch inputs with Get _Coi ns and updates the
money count for each switch pressed. This particular code is an excellent example of using variable
aliases for readability.

Challenge

Modify the code in experiment 27 to display the input voltage on the seven-segment displays.

Page 178 e StampWorks Manual Version 1.2

Experiment #30: Using a Real-Time Clock

SeR Wty Experiment #30:
Using a Real-Time Clock

This experiment demonstrates the BASIC Stamp’s time-keeping functions through the use of an
external real-time clock (RTC). RTC time capability is crucial to time-of-day applications and
applications that require the measurement of elapsed time.

Building The Circuit (Note that schematic is NOT chip-centric)

f §
i +5 i
+5 i - i
| > 1
| | |
! ¢ 3 $10K |
1K 5 5 Do } < < < i
PO O——MV—— P4 CF———O—— 3 !
7 = g |
P1 [OD>—— 1 DS1302 [32.768kHz D1 !
5 3 G—é_r_r
P 3] Ps :
| i
l P6 G—mé—’\—u
4 E
= i i
P7 G—Dsé)—o |
: |
EBORGIGEN
' |
A A & |
;= = = = Vss |
b
' File...... Ex30 - DS1302. BS2
' Pur pose... RTC Contr ol
' Aut hor. ... Parall ax
' E-mail.... stanptech@arall axinc.com
' Started...

Updated... 01 MAY 2002

{ $STAMP BS2}

StampWorks Manual Version 1.2 e Page 179

Experiment #30: Using a Real-Time Clock

Thi s program denonstrates the control and use of an external real-time clcok
chip, the DS1302 from Dal | as Seni conduct or .

" I/O Definitions

Dat al O CON 0 ' DS1302. 6

Cl ock CON 1 ' DS1302. 7

CS1302 CON 2 ' DS1302.5

Bt nsl n VAR I nB ' button input

' Constants

W Secs CON $80 ' wite seconds
RdSecs CON $81 ' read seconds

W M ns CON $82 " 'wite mnutes

RdM ns CON $83 ' read ninutes

W Hrs CON $84 " 'wite hours

RdHr s CON $85 ' read hours

CWPr CON $8E ' wite protect register
Wer 1 CON $80 ' set write protect
WPr 0 CON $00 ' clear wite protect
W Bur st CON $BE ' 'wite burst of data
RdBur st CON $BF ' read burst of data
W Ram CON $Co ' RAM addr ess control
RdRam CON $C1

Yes CON 1

No CON 0

Hr 24 CON 0

Hr 12 CON 1

C ockMbde CON Hr 12 ' use AM PM node

Page 180 e StampWorks Manual Version 1.2

Experiment #30: Using a Real-Time Clock

' Vari abl es

i ndex
reg
i oByte

secs
secs01
secsl10
m ns

m ns01
m ns10
hrs

hrs01
hrs10
day

anpm
t Mode

rawTi me
wor k

ol dSecs
apChar

bt ns

bt nM n
bt nHr s
bt nDay
bt nBack

VAR

VAR
VAR

VAR
VAR
VAR
VAR

VAR
VAR
VAR
VAR
VAR

secs. LowNi b
secs. H ghNi b

m ns. LowNi b
m ns. H ghNi b
Byt e

hrs. LowNi b
hrs. H ghNi b
Byt e

hrs.Bit5
hrs.Bit7

Wor d
Byt e
Byt e
Byt e

Ni b

btns.Bit0
btns.Bitl
btns.Bit2
btns.Bit3

| oop counter
' DS1302 address to read/wite
' data to/from DS1302

seconds

m nut es

hour s

day

"0
"0

PM
12

raw storage of time val ues

wor k variabl e for display output
previ ous seconds val ue

" "A" or "P"

button inputs
' update m nutes
updat e hours

' updat e day

go backward

Su
Tu
Th

Fr
Sa

"Sunday", O
"Monday", O
"Tuesday", O
"Wednesday", O
"Thur sday", 0
"Friday", O
"Sat urday", O

StampWorks Manual Version 1.2 e Page 181

Experiment #30: Using a Real-Time Clock

" Initialization

Initialize:
DirL = 990000111

reg = CWPr
ioByte = WPrO
GOSUB RTC_Cut

ol dSecs = $99
hrs = $06
GOSUB Set _Ti ne

Mai nl:
GOSUB Get _Ti ne
I F (secs = ol dSecs) THEN Check_Buttons

Mai n2:
GOSUB Show_Ti ne
ol dSecs = secs

Check_Buttons:
GOSUB Get _Buttons
IF (btns = 0) THEN Do_Sone_Task
I F (btnBack = Yes) THEN Go_Back

Go_Forwar d:
rawTi nme = rawTli me + btnM n
rawTi me = rawli me + (btnH's * 60)
day = (day + btnDay) // 7
GOTO Updat e_Cl ock

CGo_Back:
IF (btns <= 9%4000) THEN Do_Sone_Task
rawTi me = rawli me + (btnM n * 1439)
rawlime = rawli me + (btnHrs * 1380)
day = (day + (btnDay * 6)) // 7

Updat e_d ock:
rawTime = rawline // 1440

Page 182 e StampWorks Manual Version 1.2

switches are ins, others outs

clear wite protect register

set the display flag
preset tine to 6: 00 AM

read the DS1302
tinme for update?

yes, show it
mark it

|l et Stanp do other work
back button pressed?

add one minute
add one hour
next day

no update button pressed
subtract one m nute
subtract one hour

previ ous day

send updat ed val ue to DS1302
cl ean-up time nods

Experiment #30: Using a Real-Time Clock

GOSUB Set _Raw_Ti ne
GOTO Mai n2

Do_Sone_Task:
ot her code here

GOTO Mai nl

Show_Ti ne:
DEBUG Hone
LOOKUP day, [Su, Mo, Tu, W, Th, Fr, Sa] , wor k

Get _Day_Char:
READ wor k, i oByte
IF (ioByte = 0) THEN Check_C ock_Mde
DEBUG i oByt e
work = work + 1
GOTO CGet _Day_Char

Check_d ock_Mbde:
DEBUG " ", CR
IF (Cl ockMbde = Hr24) THEN Show24

set the clock with rawTi ne

wor k when not setting clock

get address of day string

grab a character
" if 0, string is conplete
' print the character

poi nt to next

cl ear day nanme debris

Showl2:
DEBUG DEC2 12 - (24 - (hrsl10 * 10 + hrs01) // 12)
DEBUG ":", HEX2 mins, ":", HEX2 secs
apChar = "A"

IF (hrs < $12) THEN Show_AMPM
apChar = "P"

Show_AVPM
DEBUG " ", apChar, "M
GOTO Show Ti me_Done

Show24:

assune AM
check tinme
hrs was >= $12

print AMor PM

DEBUG HEX2 hrs, ":", HEX2 mins, ":", HEX2 secs

Show_Ti me_Done:
RETURN

Cet _Buttons:

StampWorks Manual Version 1.2 e Page 183

Experiment #30: Using a Real-Time Clock

btns = %4111

FOR index = 1 TO 10
btns = btns & ~Btnsln
PAUSE 5

NEXT

PAUSE 200

RETURN

RTC Qut :
H GH CS1302

enabl e all button inputs

test inputs
' delay between tests

" slow held button(s)

' send ioByte to reg in DS1302

SHI FTOUT Datal O, C ock, LSBFirst, [reg, ioByte]

LOW CS1302
RETURN

RTC | n:
H GH CS1302
SHI FTQUT Datal O C ock, LSBFirst, [reg]
SHI FTIN Datal O, d ock, LSBPre, [ioByte]
LOW CS1302
RETURN

Set _Raw_Ti nme:
hrs10 = rawTime / 600
hrsO01 = (rawTine // 600) / 60
m nsl1l0 = (rawTlime // 60) / 10
mnsO01l = rawTine // 10

Set _Ti nme:
H GH CS1302
SHI FTQUT Datal O, C ock, LSBFirst, [WBurst]

SHI FTQUT Datal O, C ock, LSBFirst, [secs, mins,

LOW CS1302
RETURN

CGet _Ti ne:
Hl GH CS1302
SHI FTQUT Datal O, C ock, LSBFirst, [RdBurst]
SHI FTIN Datal O, d ock, LSBPre, [secs, m ns,
LOW CS1302

rawlime = ((hrs10 & 941) * 600) + (hrsOl * 60)

rawTi me
RETURN

rawlinme + (mnsl0 * 10) + m nsO1

Page 184 e StampWorks Manual Version 1.2

read i oByte fromreg in DS1302

convert rawline to BCD

wite data with burst node

hrs, 0, 0, day, 0, 0]

read data with burst node

hrs, day, day, day]

Experiment #30: Using a Real-Time Clock

Behind The Scenes

While it is possible to implement rudimentary timekeeping functions in code with PAUSE, problems
arise when BASIC Stamp needs to handle other activities. This is especially true when an application
needs to handle time, day and date. The cleanest solution is an external real-time clock. In this
experiment, we'll use the Dallas Semiconductor DS1302. Like the DS1620, the DS1302 requires only
three lines to communicate with the BASIC Stamp. Since these two devices are compatible with each
other, the clock and data lines to can be shared giving the BASIC Stamp real-time clock and
temperature measurement using only four I/O lines.

Once programmed the DS1302 runs by itself and accurately keeps track of seconds, minutes, hours
(with an AM/PM indicator, if running in 12-hour mode), date of month, month, day of week and year
with leap year compensation valid up to the year 2100. As a bonus, the DS1302 contains 31 bytes of
RAM that we can use as we please. And for projects that use main’s power, the DS1302 also contains
a trickle-charging circuit that can charge a back-up battery.

The DS1302 is a register-based device, that is, each element of the time and date is stored in its own
register (memory address). For convenience, two modes of reading and writing are available: register
and burst. With register access, individual elements can be written or read. With burst access, all of
the registers can be set at once and any number (starting with seconds) can be read back.

In order to keep our interface with the DS1302 simple, this experiment uses it in the 24-hour mode.
In this mode, we don't have to fuss with the DS1302 AM/PM indicator bit. For a 12-hour display, we'll
deduce AM/PM mathematically. In the code, time is handled as a single, word-sized variable
(rawTi nme) that represents the number of minutes past midnight. This will make calculating durations
and comparing alarm times with the current time very straightforward.

Another compelling reason to use a raw time format is that the DS1302 stores its registers in BCD
(binary coded decimal). BCD is a method of storing a value between zero and 99 in a byte-sized
variable. The ones digit occupies the lower nibble, the tens digit the upper. Neither nibble of a BCD
byte is allowed to have a value greater than nine. Thankfully, the BASIC Stamp allows nibble-sized
variables and, more importantly, it allows variables to be aliased.

This experiment demonstrates the DS1302 basics by setting the clock, then polling it for updates.
Conversion to and from the DS1320 BCD register format is handled by the subroutines that set and
retrieve information in burst mode.

Four pushbuttons are used to set the day, hours and minutes of the clock. Normally, the buttons
cause each element to increment. By holding the fourth button, each element will roll back. When no

StampWorks Manual Version 1.2 e Page 185

Experiment #30: Using a Real-Time Clock

button is pressed, the program passes to a routine called Do_Sone_Task. This is where you would
put additional code (reading a DS1620, for example).

Program output is sent to a DEBUG window. The Show_Ti me subroutine handles printing the day and
time in the format specified by d ockMode.

Challenge (Advanced)
Add a DS1620 using the connections shown below. Write a program that tracks current, minimum

and maximum temperature and will display (use DEBUG) the time and date on which the minimum
and maximum temperature was measured.

+5
8-|V

1K 4
PO O——MWAV——

PI[D>—— - DS1620
PI[O>———
l4

Page 186 e StampWorks Manual Version 1.2

Experiment #31: Serial Communications

StampWerks Experiment #31:
: Serial Communications

This experiment demonstrates the BASIC Stamp’s ability to communicate with other computers
through any of its I/O pins. It also demonstrates the ability to store information in the BASIC Stamp'’s
EEPROM space.

New PBASIC elements/commands to know:

e SERIN

+ SERQUT

 WAIT (SERI N nodifier)

e HEX (SERI N SERQUT nodifier)
e BIN (SERI N SERQUT nodi fi er)
c WRITE

Building The Circuit (Note that schematic is NOT chip-centric)

+5

|

|
|
|
|
|
|
i
!
| 2
| 200 \ | P5 [D—— | DS1620
|
|
|
i
i
|
|
|
|
|

0
PO D—O0—wW—P}—

1 200 \ 1K
P1 D—é—‘W\v—N—u P4 O——MWW—
!

2
P2 D—O0—wW—p—¢ o6
P3 D—O0—mw—P—4 J_4

Vss =
RX { T !
P14 G—é

StampWorks Manual Version 1.2 e Page 187

Experiment #31: Serial Communications

File...... Ex31 - Pol | St anp. BS2

Pur pose... Serial Comunications

Aut hor. ... Parall ax

E-mail.... stanptech@arall axinc.com
Started...

' Updated... 01 MAY 2002

' {$STAWP BS2}

' Program Description

Thi s program denonstrates serial communications through Stanp I/ O pins.

LEDs VAR Qut A ' LED outputs
DQ CON 4 ' DS1620.1 (through 1K resistor)
Cl ock CON 5 ' DS1620. 2
Reset CON 6 ' DS1620. 3
RxD CON 14 ' serial input - to I NEX RxD
TxD CON 15 ' serial output - to INEX TxD
' Constants
Baud96 CON 84 ' 9600-8-N-1, BS2/BS2e
Baud96 CON 240 ' BS2sx/ BS2p
Cvenu CON $FF ' show command nenu
D CON $FO ' get string ID
CSet CON $F1 ' set string ID
CTnp CON $A0 ' get DS1620 - display raw count
CTnpC CON $AL ' get DS1620 - display in C
CTnpF CON $A2 ' get DS1620 - display in F

Page 188 e StampWorks Manual Version 1.2

Experiment #31: Serial Communications

CSt at CON $BO ' get digital output status
CLEDs CON $B1 ' set LED outputs

RTnp CON $AA ' read tenperature

W Hi CON $01 " wite TH (high tenp register)
WILo CON $02 " 'wite TL (low tenp register)
RTHi CON $A1 ' read TH

RTLo CON $A2 ' read TL

StartC CON $EE ' start conversion

St opC CON $22 ' stop conversion

W Cfg CON $0C ' wite configuration register
RdCf g CON $AC ' read configuration register
' Vari abl es

cmd VAR Byt e ' command from PC/term nal
eeAddr VAR Byt e ' EE address pointer

eeDat a VAR Byt e ' EE data

par am VAR Wor d ' paraneter from PC

char VAR par am LowByt e ' character fromterm nal
tnmpln VAR Wor d ' raw data from DS1620

hal f Bi t VAR tmpln. Bit0 ' 0.5 degree C indicator

si gn VAR tmpln.Bit8 ' 1 = negative tenperature
tenpC VAR Wor d ' degrees Cin tenths

t enpF VAR Wor d ' degrees F in tenths

pot Val VAR Wor d ' reading from BSAC pot

but t ons VAR Ni b ' input buttons

' EEPROM Dat a

1D DATA " StampWrks 1.2", CR ' CRtermnated string

Initialize:
DirA = 9%111 ' LED pins are outputs
H GH Reset ' alert the DS1620

StampWorks Manual Version 1.2 e Page 189

Experiment #31: Serial Communications

SH FTOUT DQ C ock, LSBFirst, [WCfg, %0] ' use with CPU; free-run
LOW Reset

PAUSE 10

H GH Reset

SHI FTOUT DQ C ock, LSBFirst, [StartC] ' start conversions

LOW Reset

GOTO Show_Menu

Pr ogr am Code

Mai n:
cmd = 0
SERI N RxD, Baud96, [WAIT ("?"), HEX cnd]

check for nenu request
IF (cmd = CMenu) THEN Show_Menu

convert command for branching
LOOKDOM cnd, [CI D, CSet, CTnp, CInpC, CTnpF, CStat, CLEDs], cnd

branch to requested routine
BRANCH cnd, [Show ID, Set | D, Show Tenp, Show Tenp_C, Show Tenp_F]
crd = cnd - 5
BRANCH cnd, [Show_ St atus, Set LEDs]

BadConmand:

SERQUT TxD, Baud96, ["lInvalid Command: ", HEX2 cnd, CR]
GOTO Mai n

Show_Menu:
SERQUT TxD, Baud96, [CLS]
SERQUT TxD, Baud96, [" ", CR
SERQUT TxD, Baud96, [St ampWor ks Moni t or ", CR
SERQUT TxD, Baud96, [" ", CR

SEROUT TxD, Baud96, ["?FF - Show Menu", CR|

SEROUT TxD, Baud96, ["?F0 - Display ID', CR]

SEROUT TxD, Baud96, ["?F1 - Set ID', CR]

SEROUT TxD, Baud96, ["?A0 - DS1620 (Raw count)", CR]

Page 190 e StampWorks Manual Version 1.2

Experiment #31: Serial Communications

SERQUT TxD, Baud96, ["?Al - Tenperature (Q", CR]
SERQUT TxD, Baud96, ["?A2 - Tenperature (F)", CR]
SERQUT TxD, Baud96, ["?B0 - Display LED Status", CR]
SERQUT TxD, Baud96, ["?Bl1 - Set LEDs", CR, CR|

SERQUT TxD, Baud96, ["Pl ease enter a command.", CR CR]

GOTO Mai n
Show | D:
SERQUT TxD, Baud96, ["I|D="] ' | abel out put
eeAddr = ID ' point to first character of ID
Get _EE:
READ eeAddr, eeData ' read a character from EEPROM
SERQUT TxD, Baud96, [eeDat a] ' print the character
eeAddr = eeAddr + 1 ' point to next character
|F (eeData <> CR) THEN Get EE " if not CR read another
GOTO Mai n
Set _ID:
eeAddr = ID ' point to ID location
Get _Char:
SERI N RxD, Baud96, [char] ' get character from PC
VWRI TE eeAddr, char ' wite character to EEPROM
eeAddr = eeAddr + 1 ' point to next |ocation
IF (char <> CR) THEN Get _Char " if not CR, wait for another
GOTO Show_I D ' confirmnew I D
Show_Tenp:

GOSUB Get _Tenp

' send raw tenp to PC

SERQUT TxD, Baud96, ["DS1620=", DEC tnpln, CR|
GOTO Mai n

Show_Tenp_C:
GOSUB Get _Tenp
IF (sign = 0) THEN No_Neg_C
tmpln =0 ' only tenps above freezing

No_Neg_C:
' convert raw count to 10ths C
tenpC = tnpln * 5
SERQUT TxD, Baud96, ["TenpC=", DEC (tenpC/10), ".", DEC (tempC // 10), CR|

StampWorks Manual Version 1.2 e Page 191

Experiment #31: Serial Communications

GOTO Mai n

Show_Tenp_F:
GOSUB Get _Tenp
IF (sign = 0) THEN No_Neg F
tmpln = 0

No_Neg_F:
tenmpF = (tnpln * 9) + 320 ' convert raw count to 10ths F
SEROQUT TxD, Baud96, ["TempF=", DEC (tempF / 10), ".", DEC (tempF // 10), CR|
GOTO Mai n

Show_St at us:
SERQUT TxD, Baud96, ["Status=", BIN4 LEDs, CR|
GOTO Mai n

Set LEDs:
wait for output bits
- as binary string

SERI N RxD, Baud96, [BI N parani

LEDs = param LowNi b ' set the outputs

GOTO Show_St at us ' confirm new out puts
CGet _Tenp:

H GH Reset ' alert the DS1620

SHI FTOUT DQ d ock, LSBFirst, [RTnp] ' read tenperature

SHI FTIN DQ C ock, LSBPre, [tnpln\9] ' get the tenperature

LOW Reset

RETURN

Behind The Scenes

Without asynchronous serial communications the world would not be what it is today. Businesses
would be hard pressed to exchange information with each other. There would be no ATMs for

checking our bank accounts and withdrawing funds. There would be no Internet.

Previous experiments have used synchronous serial communications. In that scheme, two lines are
required: clock and data. The benefit is the automatic synchronization of sender and receiver. The

downside is that it requires at least two wires to send a message.

Page 192 e StampWorks Manual Version 1.2

Experiment #31: Serial Communications

Asynchronous serial communications requires only a single wire to transmit a message. What is
necessary to allow this scheme is that both the sender and receiver must agree on the
communications speed before the transmission can be received. Some “smart” systems can detect
the communications speed (baud rate), the BASIC Stamp cannot.

In this experiment we'll use SEROUT to send information to a terminal program and SERI N to take
data in. The input will usually be a command and sometimes the command will be accompanied with
new data.

After initializing the LED outputs and the DS1620, the program enters the main loop and waits for
input from the terminal program. First, SERI N waits for the “?” character to arrive, ignoring
everything else until that happens. The question mark, then, is what signifies the start of a query.
Once a question mark arrives, the HEX modifier causes the BASIC Stamp to look for valid hex
characters (0 - 9, A - F). The arrival of any non-hex character (usually a carriage return [Enter]
when using a terminal) tells the BASIC Stamp to stop accepting input (to the variable called par amin
our case) and continue on.

What actually has happened is that the BASIC Stamp has used the SERI N function to do a text-to-
numeric conversion. Now that a command is available, the program uses LOOKDOWN to decode the
command and BRANCH to jump to the requested subroutine if the command was valid. If the
command isn't valid, a message and the offending input is displayed.

The BASIC Stamp responds to a request sending a text string using SEROUT set to 9600 baud (so we
can use the BASIC Stamp’s DEBUG terminal as the host). Each of the response strings consists of a
label, the equal sign, the value of that particular parameter and finally, a carriage return. When using
a terminal program, the output is easily readable. Something like this:

ID=Parallax BS2
The carriage return at the end of the output gives us a new line when using a terminal program and
serves as an “end of input” when we process the input with our own program (similar to BASIC
Stamp Plot Lite). The equal sign can be used as a delimiter when another computer program
communicates with the BASIC Stamp. We'll use it to distinguish the label from its value.

Most of the queries are requests for information. Two of them, however, can modify information that
is stored in the BASIC Stamp.

StampWorks Manual Version 1.2 e Page 193

Experiment #31: Serial Communications

The first one is "?F1” which will allow us to write a string value to the BASIC Stamp’s EEPROM (in a
location called ID). When F1 is received as a command value, the program jumps to the subroutine
called Set I D. On entry to Set | D, the EE pointer called addr is initialized, then the BASIC Stamp
waits for a character to arrive. Notice that no modifier is used here. Since terminal programs and the
BASIC Stamp represent characters using ASCII codes, we don't have to do anything special. When a
character does arrive, WRI TE is used to put the character into EEPROM and the address pointer is
incremented. If the last character was a carriage return (13), the program outputs the new string
(using the code at Show | D), otherwise it loops back and waits for another character.

The second modifying query is “?B1” which allows us to set the status of four LEDs. Take a look at
the subroutine called Set _LEDs. This time, the BI N modifier of SERI N is used so that we can easily
define individual bits we wish to control. By using the Bl N modifier, our input will be a string of ones
and zeros (any other character will terminate the binary input). In this program, a “1” will cause the
LED to turn on and a “0” will cause the LED to turn off. Here’s an example of using the B1 query.

?B1 0011 <CR>

The figure below shows an actual on-line session using the BASIC Stamp’s DEBUG terminal. To run
the experiment, follow these steps:

Remove components from previous experiment.

Enter and download the program

Remove power from StampWorks lab board and build the circuit
Move the programming cable to the RS-232 Interfacing port
Open a DEBUG window by clicking on the DEBUG icon

Set the StampWorks lab board power switch to on.

ounhwNe

Page 194 e StampWorks Manual Version 1.2

Experiment #31: Serial Communications

Debug Terminal #1

Com Part: Baud Rate: Parity:
[comt =] [0 =l [Nore =]
D ata Bits: Flow Contral: ® 1< [DTR [~ RIS

e = Jor 7 @r« enpsh ecis

?Fl The BASIC Stamp Rocks!

[Capture... | Macro Keys... Fauge Cloge

Challenge (for PC programmers)

Write a PC program that interfaces with this experiment.

StampWorks Manual Version 1.2 e Page 195

Experiment #32: I’C Communications

S’CamPW@l’kS Experiment #32:
I

2C Communications

This experiment demonstrates the BASIC Stamp’s ability to communicate with other devices through
the use of the popular Philips I>C protocol. The experiment uses this protocol to write and read data
to a serial EEPROM and the low-level I°C routines can be used to communicate with any I°C device.

Building The Circuit

+5
24LC32
1 ~ 8
A0 Vdd
Em % g4k

3 A2 sCL 8 P9

4 Vss SDA 5 P8
File...... Ex32 - 24LC32. BS2
Pur pose... 24LC32 control via |2C
Aut hor. ... Parall ax
E-mail.... stanptech@arall axinc.com
Started...

Updated... 01 MAY 2002

{ $STAVP BS2}

Thi s program denpnstrates essential |2C routines and conmuni cati on with the
M crochi p 24LC32 serial EEPROM

The connections for this programconformto the BS2p |12C N and | 2C0OUT

StampWorks Manual Version 1.2 e Page 197

Experiment #32: I’C Communications

commands. Use this program for the BS2, BS2e or BS2sx. There is a separate
' program for the BS2p.

SDA CON 8 ' 12C serial data line
SCL CON 9 ' 12C serial clock line
' Constants

DevType CON %4010 << 4 ' device type

DevAddr CON %00 << 1 ' address = %900 -> %11
W 2432 CON DevType | DevAddr | O " 'wite to 24LC32

Rd2432 CON DevType | DevAddr | 1 ' read from 24LC32

ACK CON 0 ' acknow edge bit

NAK CON 1 ' no ack bit

Crsr XY CON 2 ' DEBUG Position Control
' Vari abl es

i 2cSDA VAR Ni b ' 12C serial data pin

i 2cDat a VAR Byt e ' data to/from device

i 2cWor k VAR Byt e ' work byte for TX routine
i 2cAck VAR Bi t ' ACK bit from device
eeAddr VAR Wrd ' address: 0 - 4095

test VAR Ni b

out Val VAR Byt e ' output to EEPROM

i nVal VAR Byt e ' input from EEPROM

Initialize:

Page 198 e StampWorks Manual Version 1.2

Experiment #32: I’C Communications

| et DEBUG open
setup out put screen

defi ne SDA pin

PAUSE 250
DEBUG CLS, "24LC32 Demp", CR, CR
DEBUG "Address... ", CR
DEBUG "Qutput.... ", CR
DEBUG "I nput ", CR
i 2cSDA = SDA
' Program Code
Mai n:
FOR eeAddr = 0 TO 4095
DEBUG Crsr XY, 11, 2, DEC eeAddr, " "
FOR test = 0 TO 3
LOOKUP test, [$FF, $AA, $55, $00], out Val
DEBUG Crsr XY, 11, 3, |IHEX2 out Val
i 2cData = out Val
GOSUB Wite Byte
PAUSE 10
GOSUB Read_Byt e
inVal = i2cData
DEBUG Crsr XY, 11, 4, IHEX2 inVal, " "
IF (inVal <> outVal) THEN Bad_Addr
DEBUG " Pass "
GOTO Next _Addr
Bad_Addr:
DEBUG "Fail "
Next _Addr:
PAUSE 50
NEXT
NEXT

DEBUG CR, CR, "Done!"
END

| ocati ons

patterns

' Byte to be witten is passed in i2cData
-- address passed in eeAddr

StampWorks Manual Version 1.2 e Page 199

Experiment #32: I’C Communications

Wite Byte:
GOSUB | 2C Start ' send Start
i 2cWrk = W 2432 ' send wite command
GOSUB | 2C TX Byte
IF (i 2cAck = NAK) THEN Wite_ Byte " wait until not busy
i 2cWork = eeAddr / 256 ' send word address (1)
GOSUB | 2C_TX _Byte
i2cWork = eeAddr // 256 ' send word address (0)
GOSUB | 2C_TX _Byte
i 2cWork = i 2cDat a ' send data

GOSUB 1 2C_TX_Byte
GOSUB | 2C_St op
RETURN

Byte read is returned in i2cData
-- address passed in eeAddr

Read_Byt e:
GOSUB | 2C Start ' send Start
i 2cWork = W 2432 ' send wite command
GOSUB | 2C TX Byte
IF (i 2cAck = NAK) THEN Wite_ Byte " wait until not busy
i 2cWork = eeAddr / 256 ' send word address (1)
GOSUB |1 2C TX Byte
i 2cWork = eeAddr // 256 ' send word address (0)

GOSUB | 2C TX Byte

GOSUB | 2C St art

i 2cWork = Rd2432 ' send read command
GOSUB | 2C TX Byte

GOSUB | 2C_RX_Byt e_Nak

GOSUB | 2C_St op

i2cData = i 2cWork

RETURN

Low Level |2C Subrouti nes

' --- Start ---
12C Start: ' 12C start bit sequence
I NPUT i 2cSDA
I NPUT SCL
LOW i 2cSDA ' SDA -> | ow whil e SCL high

Page 200 e StampWorks Manual Version 1.2

Experiment #32: I’C Communications

Cl ock_Hol d:
IF (Ins.LowBit(SCL) = 0) THEN Cl ock_Hol d ' device ready?
RETURN

--- Transmit ---

|1 2C_TX Byte:
SHI FTQUT i 2cSDA, SCL, MSBFI RST, [i2cWork\ 8] ' send byte to device
SHI FTI N i 2cSDA, SCL, MSBPRE, [i 2cAck\1] ' get acknow edge bit
RETURN

--- Receive ---

1 2C_RX Byt e_Nak:

i 2cAck = NAK ' no ACK = high
GOTO |1 2C_RX

|1 2C_RX Byt e:
i 2cAck = ACK ' ACK = | ow

1 2C_RX:
SHI FTI N i 2cSDA, SCL, MSBPRE, [i2cWor k\ 8] ' get byte from device
SHI FTQUT i 2cSDA, SCL, LSBFI RST, [i2cAck\1] ' send ack or nak
RETURN
--- St Op g

1 2C_St op: ' 12C stop bit sequence
LOW i 2cSDA
I NPUT SCL
I NPUT i 2c SDA ' SDA --> high while SCL high
RETURN

Behind the Scenes

The I’C-bus is a two-wire, synchronous bus that uses a Master-Slave relationship between
components. The Master initiates communication with the Slave and is responsible for generating
the clock signal. If requested to do so, the Slave can send data back to the Master. This means the
data pin (SDA) is bi-directional and the clock pin (SCL) is [usually] controlled only by the Master.

StampWorks Manual Version 1.2 e Page 201

Experiment #32: I’C Communications

The transfer of data between the Master and Slave works like this:

Master sending data
Master initiates transfer
- Master addresses Slave
Master sends data to Slave
Master terminates transfer

Master receiving data
. Master initiates transfer
Master addresses Slave
. Master receives data from Slave
Master terminates transfer

The I°C specification actually allows for multiple Masters to exist on a common bus and provides a
method for arbitrating between them. That's a bit beyond the scope of what we need to do so we're
going to keep things simple. In our setup, the BS2 (or BS2e or BS2sx) will be the Master and
anything connected to it will be a Slave.

You'll notice in I°C schematics that the SDA and SCL lines are pulled up to Vdd (usually through
4.7K). The specification calls for device bus pins to be open drain. To put a high on either line, the
associated bus pin is made an input (floats) and the pull-up takes the line to Vdd. To make a line
low, the bus pin pulls it to Vss (ground).

This scheme is designed to protect devices on the bus from a short to ground. Since neither line is
driven high, there is no danger. We're going to cheat a bit. Instead of writing code to pull a line low
or release it (certainly possible — I did it), we're going to use SHIFTOUT and SHIFTIN to move data
back and forth. Using SHIFTOUT and SHIFTIN is faster and saves precious code space. If you're
concerned about a bus short damaging the Stamp's SDA or SCL pins during SHIFTOUT and
SHIFTIN, you can protect each of them with a 220 ohm resistor. I've been careful with my wiring
and code and haven't found this necessary.

Page 202 e StampWorks Manual Version 1.2

Experiment #32: I’C Communications

Low Level I’C Code
At its lowest level, the I°C Master needs to do four things:

- Generate a Start condition
Transmit 8-bit data to the Slave
Receive 8-bit data from Slave — with or without Acknowledge
Generate Stop condition

A Start condition is defined as a HIGH to LOW transition on the SDA line while the SCL line is HIGH.
All transmissions begin with a Start condition. A Stop condition is defined as a LOW to HIGH
transition of the SDA line while the clock line is HIGH. A Stop condition terminates a transfer and can
be used to abort it as well.

There is a brief period when the Slave can take control of the SCL line. If a Slave is not ready to
transmit or receive data, it can hold the SCL line low after the Start condition. The Master can
monitor this to wait for the Slave to be ready. At the speed of the BS2, monitoring the clock line
usually isn't necessary but I've built the clock-hold test into the I2C_Start subroutine just to be safe.

Data is transferred eight bits at a time, sending the MSB first. After each byte, the I°C specification
calls for the receiving device to acknowledge the transmission by bringing the bus low for the ninth
clock. The exception to this is when the Master is the receiver and is receiving the final byte from
the Slave. In this case, there is no Acknowledge bit sent from Master to Slave.

Sending and receiving data from a specific slave always requires a Start condition, sending the Slave
address and finally, the Stop condition. What happens between the Slave address and the Stop are
dependent on the device and what we're doing.

What you'll need to do is get the data sheet for the I°C device you want to connect to. I have found,
without exception, that data sheets for I’C-compatible parts have very clear protocol definitions —
usually in graphic form — that makes implementing our low-level I°C routines very simple.

The experiment uses the low-level I°C routines to implement the Write_Byte and Read_Byte
routines. The sequence for these routines was lifted right from the 24LC32 data sheet. Notice that
each routine begins with an I°C Start condition and is terminated with the Stop condition. The code
in between sends the device command/type code, the address to deal with and then actually deals
with (writes or reads) the data. While this takes a few lines of code, it is actually very
straightforward.

StampWorks Manual Version 1.2 e Page 203

Experiment #32: I’C Communications

Most I°C routines follow a very similar structure; varying only in the internal address and for a few
devices, the way the device code is transmitted (there are a few devices that carry an address setting
in the device code byte).

Challenge

From the hundreds of I°C devices available, pick one that will be most useful for your projects and
write the high-level code necessary to communicate with it.

Page 204 e StampWorks Manual Version 1.2

Striking Out On Your Own

NERIAAEIEE Striking Out on Your Own

Congratulations, you'’re a BASIC Stamp programmer! So what’s next? Well, that's up to you. Many
new programmers get stuck when it comes to developing their own projects. Don't worry, this is
natural — and there are ways out of being stuck. The following tips will help you succeed in moving
your ideas to reality.

Plan Your Work, Work Your Plan

You've heard it a million times: plan, plan, and plan. Nothing gets a programmer into more trouble
than bad or inadequate planning. This is particularly true with the BASIC Stamp as resources are so
limited. Most of the programs we've fixed were “broken” due to bad planning and poor formatting
which lead to errors.

Talk It Out

Talk yourself through the program. Don't just think it through, ta/k it through. Talk to yourself-out
loud—as if you were explaining the operation of the program to a fellow programmer. Often, just
hearing our own voice is what makes the difference. Better yet, talk it out as if the person you're
talking to /snta programmer. This will force you to explain details. Many times we take things for
granted when we're talking to ourselves or others of similar ability.

Write It Out

Design the details of your program on a white (dry erase) board before you sit down at your
computer. And use a lot of colors. You'll find working through a design visually will offer new insights,
and the use of this medium allows you to write code snippets within your functional diagrams.

Design With “Sticky Notes”

Get out a pad of small “sticky notes”. Write module names or concise code fragments on individual
notes and then stick them up on the wall. Now stand back and take a look. Then move them around.
Add notes, take some away; just do what feels right to you. This exercise works particularly well with
groups. How do you know when you're done? When the sticky notes stop moving! It's a good idea to
record the final outcome before starting your editor. Another tip: this trick works even better when
combined with trick #2. You can draw lines between and around notes to indicate program flow or
logical groupings. If it's not quite right, just erase the lines or move some notes. Try this trick; it
really does work.

StampWorks Manual Version 1.2 e Page 205

Striking Out On Your Own

Going Beyond The Box

By now, your appetite for BASIC Stamp projects has probably grown well beyond what you ever
expected. So where do you turn now? Don't worry, there are many BASIC Stamp and related
resources available, both in print and on the Internet. Here's a list to get you started:

Books & Magazines

e Microcontroller Application Cookbook By Matt Gilliland

e Microcontroller Projects with BASIC Stamps By Al Williams

e Programming and Customizing the BASIC Stamp Computer By Scott Edwards
e BASIC Stamp By Claus Kiihnel and Klaus Zahnert

e Getting Started In Electronics By Forrest Mims

e Engineer’s Notebook By Forrest Mims

e MNuts & Volts Magazine “Stamp Applications” column

Internet Sites

www.parallaxinc.com Parallax main site

www.stampsinclass.com Parallax educational site
www.al-williams.com/awce/index.htm Al Williams web site

www.seetron.com Scott Edwards Electronics web site
www.hth.com/losa List of Stamp Applications — great idea source
www.emesystems.com/BS2index.htm Tracy Allen’s Stamp resources — very technical

Page 206 e StampWorks Manual Version 1.2

Appendix A: BASIC Stamp II Manual Version 2.0c

S’camp\/\/@%rks Appendix A: _
BASIC Stamp II Manual Version 2.0c

Pages 198-344 of the BASIC Stamp Manual are included in this appendix. The entire manual (and
future updates) is available for purchase or download from www.parallaxinc.com.

StampWorks Manual Version 1.2 e Page 207

