
Column #94: Getting’ MIDI With It

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 11

Column #94 February 2003 by Jon Williams:

Gettin’ MIDI With It

Well, last month I introduced you to the new PBASIC compiler, so now it’s time to have some fun
and put it to work. Even though we’re going to keep things simple, you’ll be able to see that
PBASIC 2.5 lets you write cleaner code that’s even easier to maintain. You’ll probably find – as I
have – that you can actually write programs a bit faster because there is no more forward-
thinking about GOTO labels for IF-THEN. Let's get started.

You’d be hard pressed to find anyone who doesn’t like music; in fact, most of us like several
varieties. Having experienced the late 60’s and early 70’s as a youngster, I lean toward what is
now called "classic" rock (Led Zeppelin, Jimi Hendricks, etc.), but I also like Classical, Grunge
and even a bit of Rap. Music is probably as old as mankind and is unique in that it not only helps
define cultures, yet so easily crosses cultural boundaries.

Music and electronics go way back too. Pop quiz: What was the first electronic musical
instrument? If you said the Theremin, go get yourself a cookie – you win. The Theremin was
invented in 1919 by Russian physicist Lev Termen (who became Leon Theremin). The Theremin
became very popular for music and sound effects in horror and science fiction movies, and even
found its way into popular music (the Beach Boys used a Theremin-like instrument on "Good
Vibrations" and Led Zeppelin guitarist Jimmy Page frequently used a Theremin on stage).

Column #94: Gettin’ MIDI With It

Page 12 • The Nuts and Volts of BASIC Stamps (Volume 4)

Since I like music (I can even thrash out a couple Counting Crows songs on my guitar) and I love
BASIC Stamps, it just makes sense that I should work with both at the same time. And, in
December I was out in our Rocklin office and saw a Stamp-controlled xylophone that one of my
colleagues, Stephen, had created. That same week, I assisted a New York professor who has the
interesting occupation of teaching music and technology. Music AND technology … that sounds
like a lot of fun.

Musical Connections

While the Theremin was the first electronic musical instrument, it was (and still is) a specialty
device and never became mainstream. The electronic synthesizer, however, is a different story
altogether. In the early 1980’s a group of synthesizer manufacturers got together to create a
standard that would allow various instruments to connect to and control each other. The standard
they created is called MIDI: Musical Instrument Digital Interface.

The MIDI specification (see www.midi.org) actually has three components: the protocol, the
connection and a file format. For our part, we're going to focus on the protocol. Of course, we'll
also take a look at the connection since our goal is to have the BASIC Stamp play music on a
MIDI-compatible instrument.

The MIDI protocol, as it turns out, is very straightforward and easy to implement; even on a small
micro like the BASIC Stamp. The protocol transmission scheme is straight serial at 31.25 kBaud;
a value we're not generally used to but not a problem for the BASIC Stamp since we can calculate
and set the baudmode parameter of SEROUT. For the BS2, the calculation of the baudmode
parameter is:

INT ((1,000,000 / baud) – 20)

For MIDI we get:

(1,000,000 / 31,250) – 20 = 12

Since the MIDI interface standard uses an optical-isolator on the input that is pulled up by the
connecting device, we can run in "open" mode. To do this, we'll add $8000 to the baudmode.

Figure 94.1 shows the connection to the BASIC Stamp. As you can see, the hardware is a cinch: a
couple 220-ohm resistors and a 5-pin DIN socket (female). This interface will let you connect
your BASIC Stamp to MIDI instrument using an off-the-shelf MIDI cable (you can pick one up at
Radio Shack®).

Column #94: Getting’ MIDI With It

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 13

Figure 94.1: BASIC Stamp to MIDI Connector

MIDI Messages

MIDI message packets are small; usually a command followed by two data bytes. Since our goal
this month is to allow the BASIC Stamp to play music through a MIDI instrument, the two
messages we are going to be concerned most with are "Note On" ($90) and "Note Off" ($80).

Here's the syntax:

Note On: $90, note (0 – 127), velocity (0 – 127)
Note Off: $80, note (0 – 127), velocity (0 – 127)

If, for example, we want to send a "Note On" for Middle C at the loudest volume, we would do
this:

SEROUT 15, $8000+12, [$90, $3C, $7F]

Pretty simple, isn't it? Yes, it is. Let's go ahead and create a program to experiment with sending
MIDI messages. Of course, you'll need an instrument to play through. I used a MIDI-compatible
keyboard (that, until I started this project, was the most expensive guitar tuner I own…).

Column #94: Gettin’ MIDI With It

Page 14 • The Nuts and Volts of BASIC Stamps (Volume 4)

Our program should let us specify a number of bytes to send (1 to 3), then accept the data and
transmit it as a packet when we're ready. If you're new to BASIC Stamps, this may sound a bit
complicated but, as you'll see, this is actually a very simple application.

The first part of our program simply clears the DEBUG window and displays the title. Notice that
there is a short PAUSE before the title display. This momentary blank screen serves as a visual
cue. We'll get into that more in just a second.

Main:
 DO
 DEBUG CLS
 PAUSE 500
 DEBUG "MIDI Explorer", CR
 DEBUG "-------------"

As I may have mentioned last month, the new compiler supports some new named constants;
many that are used specifically with DEBUG. The first that we'll use is CrsrXY which positions
the DEBUG cursor at the column and line values that follow. The next is ClrDn. This causes the
DEBUG window to clear from the cursor line down .

After clearing any old input, we prompt ourselves for the number of bytes to send, then accept that
value from the DEBUG window (SERIN on pin 16 at 9600 baud).

 DEBUG CrsrXY, 0, 3, ClrDn
 DEBUG "Bytes to send? : "
 SERIN 16, 84, [DEC1 nBytes]

The following section does most of the work. First we'll test for a legal nBytes value. If the value
is okay, we'll loop through the number of bytes and take each one in as a two-digit hex value.
Note the use of CrsrXY again and accepting serial data from the DEBUG window. If the nBytes
value is out-of-range, the THEN portion of IF-THEN won't run and the code will LOOP back to
the beginning (momentary blank screen).

 IF (nBytes > 0) AND (nBytes <= 3) THEN
 FOR idx = 1 TO nBytes
 DEBUG CrsrXY, 0, (idx + 4)
 DEBUG "(", DEC1 idx, ") : "
 SERIN 16, 84, [HEX2 midi(idx - 1)]
 NEXT

With the packet in memory, we'll WAIT on the Enter (CR) key to be pressed before sending it.

Column #94: Getting’ MIDI With It

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 15

 DEBUG CrsrXY, 0, (nBytes + 6)
 DEBUG "Press [Enter] to execute. "
 SERIN 16, 84, [WAIT (CR)]

The last step, then, is to send the data. The STR modifier and \Length parameter make it easy to
send the MIDI data. This works particularly well for us since we may want to change the number
of bytes to send.

 SEROUT MidiOut, MidiBaud, [STR midi\nBytes]
 ENDIF
 LOOP

 END

Figure 94.2 shows the program in action. Something interesting that you may find with your
instrument that I found with mine is that two consecutive Note On commands for the same note
require two Note Off commands. This becomes very apparent with voice selections that don't
have natural decay (volume fade).

Okay, if you were able to turn a note on and off, then you can actually play music via your BASIC
Stamp. Why would you want to do this? Well, there's a lot of reasons including the fact that there
is hardware available that responds to MIDI control signals (lighting, for example).

Stamp-Made Music

If we can send one note at a time, we can send a whole bunch – in a specific order – to play music,
right? You betcha.

Like the first, our second program is fairly short [the working part], but this one is just a bit more
sophisticated. The purpose of this program is to play music stored in BASIC Stamp DATA
statements.

Column #94: Gettin’ MIDI With It

Page 16 • The Nuts and Volts of BASIC Stamps (Volume 4)

Figure 94.1: DEBUG Window “MIDI Explorer”

The DATA statement is one of those features that migrated from "classic" PC BASIC
implementations, though the Stamp makes it easier and more functional. Remember that the
BASIC Stamp compiler writes the program's DATA statements to EEPROM, beginning at address
0 (unless specified otherwise) and building up. Program tokens are stored in the top of the
EEPROM and build down. If there is a class between DATA and program tokens, the compiler
will let you know.

There are several key features of the BASIC Stamp DATA statement that make it more flexible
that past PC implementations. The feature I take most advantage of is the ability to name DATA
locations. Look at this code:

Column #94: Getting’ MIDI With It

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 17

Name DATA "Jon Williams", 0
Location DATA "Dallas, TX USA", 0

What we've done here is defined two zero-terminated strings. To print a string in the DEBUG
window we can use this subroutine:

Print_String:
 READ eePntr, char
 IF (char <> 0) THEN
 DEBUG char
 eePntr = eePntr + 1
 GOTO Print_String
 ENDIF
 RETURN

The subroutine needs to know where to get characters – the address of the string is put into the
variable eePntr. So, if we do this:

 eePntr = Name
 GOSUB Print_String

…what's actually happening is that the compiler is evaluating the DATA statement labels into
constant values that represent the EEPROM location of the first character in each string. Given no
other DATA statements, Name evaluates to zero and Location evaluates to 13.

Another neat thing about BASIC Stamp DATA statements is the ability to store any kind of
information that we want. Here's another example:

Name DATA "Jon Williams", 0
Birthday DATA 7, 25
YrOfBirth DATA Word 1962

As you can see we've got a string, two Bytes and a Word (and yes, that's really my birthday – don't
forget the cards and gifts!). Actually, all data is store as Bytes. For character and string data, the
ASCII value is stored. For Words, they're stored Little-Endian, that is, low-byte first. As I
pointed out last month, PBASIC 2.5 allows us to READ a Word with just one operation.

Finally, the information in our DATA statements is stored in EEPROM, which means we can
change it at run-time with WRITE. This allows our program to change information and maintain
it even when power is lost.

Column #94: Gettin’ MIDI With It

Page 18 • The Nuts and Volts of BASIC Stamps (Volume 4)

Sing Me A Song, You're The Stamp-Man

Okay, let's play some music. The reason I spent a moment discussing the details of the DATA
statement is that's where where' going to keep our song information. The key to this program is
how we're going to store the song information.

While experimenting I found that I could actually cause more than one note to play with the same
"Note On" command. I simply stacked the note and velocity bytes behind it. Like this:

 $90, note1, velocity1, note2, velocity2, note3, velocity3

By playing three notes at a time, I could play simple chords and make something a bit more
musical. Okay! In the end, I came up with this storage strategy:

 command, notes, timing, note1, velocity1 {, note2, velocity2, note3, velocity3}

Note that the items in curly braces are optional. Here's an actual line from the program's DATA
table to illustrate:

 DATA NN, 3, Word N01, 060, 100, 064, 100, 067, 100

A few constants are used here. NN is the constant value for Note On ($90). N01 is the constant
value for a whole-note duration. This line of DATA represents a simple chord made up of the
notes C4 (Middle C), E4 and G4. All three notes are played at a velocity (volume) of 100.

All right, it's time to look at the program in action. Here's the main program code:

Main:
 eePntr = Mystery
 GOSUB Play_Song
 END

Really, that's the program – clearly all the work is done in Play_Song and our previous discussion
explains the use of eePntr and how it indicates one song from many stored in memory. Let's have
a look at Play_Song, then we'll go through it step-by-step.

Column #94: Getting’ MIDI With It

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 19

Play_Song:
 READ eePntr, cmd
 IF (cmd < $FF) THEN
 READ (eePntr + 1), notes
 READ (eePntr + 2), Word nTime
 FOR idx = 0 TO (notes * 2 - 1)
 READ (eePntr + 4 + idx), midi(idx)
 NEXT
 SEROUT MidiOut, MidiBaud, [cmd, STR midi\(notes * 2)]
 PAUSE nTime
 eePntr = eePntr + 6 + ((notes - 1) * 2)
 GOTO Play_Song
 ENDIF
 RETURN

This code is actually quite simple, even if it doesn't appear that way at first glance. We start by
reading the command byte. The program will use $FF as an end-of-song indicator, so we have to
test for that first. If the command byte is not $FF, the rest of the subroutine will run, otherwise we
RETURN to the caller.

Assuming we have a valid command, next up is the number of notes (1 to 3) to play. After the
notes is the timing for them. As you can see, we're taking advantage of the new Word modifier for
READ. The timing value represents the last piece of fixed information. The number of bytes (for
notes and velocities) varies; we could have two bytes, four bytes or six bytes.

A FOR-NEXT loop is used to iterate through to the end of this line and store the notes and
velocities in an array called midi. All that's left to do now is to send the command and data to our
MIDI device. Once that's taken care of, we'll use PAUSE to create the note duration. We've got
music. The last step is to update eePntr and go back to the top of Play_Song.

To be honest, the trickiest part of this whole process was converting music into the DATA
statements. If, for example, we needed to play a C4 and a D4 at the same time, with the C4 being
a quarter-note long and the D4 being a half-note long, the DATA looks like this:

 DATA NN, 2, Word N04, 060, 100, 062, 100
 DATA NX, 1, Word N04, 060, 000
 DATA NX, 1, Word 000, 062, 000

Can you see what's happening? The first line strikes both notes and holds them for a quarter-note
duration. The second line stops the C4 and holds for an additional quarter-note duration.
Remember, the D4 is still playing, so it is now a half-note long. Finally, the D4 is stopped.

Column #94: Gettin’ MIDI With It

Page 20 • The Nuts and Volts of BASIC Stamps (Volume 4)

I used a demo version of Sonar (from www.cakewalk.com) to read a MIDI file and display it in
standard musical notation. Thankfully, Sonar has this really neat feature that displays note
properties and velocity. The notes are shown as C4, G6, etc. To convert to numeric values, I used
a table found at this link:

www.harmony-central.com/MIDI/Doc/table2.html

I'll tell you what … the first person to identify the song in the main program will win a BASIC
Stamp – a brand new BS2pe-24. How about that? What that means is you have to download the
code, build the interface and let it play. Send me an e-mail with your answer.

Until next time, Happy Valentines day and Happy Stamping.

Column #94: Getting’ MIDI With It

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 21

' ===
'
' File...... Midi Explorer.BS2
' Purpose... Sends midi packets to instrument
' Author.... Jon Williams, Parallax
' E-mail.... jwilliams@parallax.com
' Started...
' Updated... 22 DEC 2002
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---
'
' This program allows the user to enter and send a midi packet through
' the DEBUG terminal. It is designed for exploring midi byte values and
' their behavior.

' -----[Revision History]--

' -----[I/O Definitions]---

MidiOut PIN 15 ' midi serial output

' -----[Constants]---

MidiBaud CON $8000 + 12 ' 31.25 kBaud -- open

' -----[Variables]---

nBytes VAR Nib ' number of bytes to send
idx VAR Nib
midi VAR Byte(3)

' -----[EEPROM Data]---

' -----[Initialization]--

' -----[Program Code]--

Column #94: Gettin’ MIDI With It

Page 22 • The Nuts and Volts of BASIC Stamps (Volume 4)

Main:
 DO
 DEBUG CLS
 PAUSE 500
 DEBUG "MIDI Explorer", CR
 DEBUG "-------------"

 DEBUG CrsrXY, 0, 3, ClrDn ' clear old input
 DEBUG "Bytes to send? : " ' prompt for nBytes
 SERIN 16, 84, [DEC1 nBytes] ' get nBytes from user
 IF (nBytes > 0) AND (nBytes <= 3) THEN ' test nByte value
 FOR idx = 1 TO nBytes
 DEBUG CrsrXY, 0, (idx + 4) ' move to input line
 DEBUG "(", DEC1 idx, ") : " ' prompt byte input
 SERIN 16, 84, [HEX2 midi(idx - 1)] ' get midi byte
 NEXT
 DEBUG CrsrXY, 0, (nBytes + 6)
 DEBUG "Press [Enter] to execute. "
 SERIN 16, 84, [WAIT (CR)] ' wait for [Enter]
 SEROUT MidiOut, MidiBaud, [STR midi\nBytes]
 ENDIF
 LOOP

 END

' -----[Subroutines]---

Column #94: Getting’ MIDI With It

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 23

' ===
'
' File...... Stamp Midi Player.BS2
' Purpose... Midi demo with BASIC Stamp 2
' Author.... Jon Williams
' E-mail.... jwilliams@parallax.com
' Started... 22 DEC 2002
' Updated... 24 DEC 2002
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---
'
' This program demonstrates a very simple mechanism for storing songs in
' EEPROM and playing them through a connected midi instrument. The song
' is played to the channel 1 of the instrument.

' -----[Revision History]--

' -----[I/O Definitions]---

MidiOut PIN 15 ' midi serial output

' -----[Constants]---

MidiBaud CON $8000 + 12 ' 31.25 kBaud -- open

Channel CON 0
NN CON $90 | Channel ' note on
NX CON $80 | Channel ' note off

N01 CON 1600 ' whole note
ND2 CON N01 / 4 * 3 ' dotted half
N02 CON N01 / 2 ' half note
N04 CON N01 / 4 ' quarter note
N08 CON N01 / 8 ' eighth note
N12 CON N04 / 3 ' quarter note triplet
N16 CON N01 / 16
N32 CON N01 / 32

' -----[Variables]---

eePntr VAR Word ' pointer to EE table

Column #94: Gettin’ MIDI With It

Page 24 • The Nuts and Volts of BASIC Stamps (Volume 4)

cmd VAR Byte ' command (on or off)
notes VAR Nib ' number of notes to play
nTime VAR Word ' note timing
midi VAR Byte(6) ' up to 3 notes at once

idx VAR Nib

' -----[EEPROM Data]---

' Record format
' Command, Notes, Timing, Note1, Volume1 {, Note2, Volume2, Note3, Volume3}

Mystery DATA NN, 1, Word N12, 069, 100
 DATA NX, 1, Word 000, 069, 000
 DATA NN, 1, Word N12, 072, 060
 DATA NX, 1, Word 000, 072, 000
 DATA NN, 1, Word N12, 076, 060
 DATA NX, 1, Word 000, 076, 000
 DATA NN, 1, Word N12, 077, 072
 DATA NX, 1, Word 000, 077, 072
 DATA NN, 1, Word N12, 072, 060
 DATA NX, 1, Word 000, 072, 000
 DATA NN, 1, Word N12, 076, 060
 DATA NX, 1, Word 000, 076, 000
 DATA NN, 1, Word N12, 077, 072
 DATA NX, 1, Word 000, 077, 072
 DATA NN, 1, Word N12, 072, 060
 DATA NX, 1, Word 000, 072, 000
 DATA NN, 1, Word N12, 076, 060
 DATA NX, 1, Word 000, 076, 000
 DATA NN, 1, Word N04, 083, 074
 DATA NX, 1, Word 000, 083, 000
 DATA NN, 1, Word N04, 083, 074
 DATA NX, 1, Word 000, 083, 000
 DATA NN, 2, Word N04, 083, 074, 081, 080
 DATA NX, 2, Word 000, 083, 000, 081, 000
 DATA NN, 2, Word N04, 083, 074, 088, 080
 DATA NX, 2, Word 000, 083, 000, 088, 000
 DATA NN, 2, Word N12, 069, 100, 086, 100
 DATA NX, 1, Word 000, 069, 000
 DATA NN, 1, Word N12, 072, 060
 DATA NX, 1, Word 000, 072, 000
 DATA NN, 1, Word N12, 076, 060
 DATA NX, 2, Word 000, 076, 000, 086, 000
 DATA NN, 2, Word N12, 077, 072, 088, 100
 DATA NX, 1, Word 000, 077, 000
 DATA NN, 1, Word N12, 072, 060
 DATA NX, 1, Word 000, 072, 000
 DATA NN, 1, Word N12, 076, 060
 DATA NX, 2, Word 000, 076, 000, 088, 000

Column #94: Getting’ MIDI With It

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 25

 DATA NN, 2, Word N12, 077, 060, 091, 100
 DATA NX, 1, Word 000, 077, 000
 DATA NN, 1, Word N12, 072, 060
 DATA NX, 1, Word 000, 072, 000
 DATA NN, 1, Word N12, 076, 060
 DATA NX, 2, Word 000, 076, 000, 091, 000
 DATA NN, 2, Word N12, 077, 060, 088, 100
 DATA NX, 1, Word 000, 077, 000
 DATA NN, 1, Word N12, 072, 060
 DATA NX, 1, Word 000, 072, 000
 DATA NN, 1, Word N12, 076, 060
 DATA NX, 1, Word ND2, 076, 000
 DATA NX, 1, Word 000, 088, 000
 DATA $FF

Chords DATA NN, 3, Word N01, 060, 100, 064, 100, 067, 100
 DATA NX, 3, Word 000, 060, 000, 064, 000, 067, 000
 DATA NN, 3, Word N01, 060, 100, 063, 100, 067, 100
 DATA NX, 3, Word 000, 060, 000, 063, 000, 067, 000
 DATA NN, 3, Word N01, 072, 100, 076, 100, 079, 100
 DATA NX, 1, Word N01, 000, 000
 DATA NX, 3, Word 000, 072, 000, 076, 000, 079, 000
 DATA $FF

' -----[Initialization]--

' -----[Program Code]--

Main:
 eePntr = Mystery
 GOSUB Play_Song
 END

' -----[Subroutines]---

Play_Song:
 READ eePntr, cmd ' get command
 IF (cmd < $FF) THEN ' if valid, play on
 READ (eePntr + 1), notes ' get number of notes
 READ (eePntr + 2), Word nTime ' get note timing
 FOR idx = 0 TO (notes * 2 - 1) ' read notes/velocities
 READ (eePntr + 4 + idx), midi(idx)
 NEXT
 SEROUT MidiOut, MidiBaud, [cmd, STR midi\(notes * 2)]
 PAUSE nTime ' wait
 eePntr = eePntr + 6 + ((notes - 1) * 2) ' point to next record
 GOTO Play_Song ' keep going
 ENDIF

Column #94: Gettin’ MIDI With It

Page 26 • The Nuts and Volts of BASIC Stamps (Volume 4)

 RETURN

Column #94: Getting’ MIDI With It

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 27

' ===
'
' File...... Stamp Midi Player (v2).BS2
' Purpose... Midi demo with BASIC Stamp 2
' Author.... Jon Williams
' E-mail.... jwilliams@parallax.com
' Started... 22 DEC 2002
' Updated... 24 DEC 2002
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---
'
' This program demonstrates a very simple mechanism for storing songs in
' EEPROM and playing them through a connected midi instrument. This ver-
' sion lets each note be sent to a different channel (voice).

' -----[Revision History]--

' -----[I/O Definitions]---

MidiOut PIN 15 ' midi serial output

' -----[Constants]---

MidiBaud CON $8000 + 12 ' 31.25 kBaud -- open

NN CON $90 ' note on
NX CON $80 ' note off
CP CON $C0 ' change patch

ND CON $01 ' note duration

N01 CON 1800 ' whole note
ND2 CON N01 / 4 * 3 ' dotted half
N02 CON N01 / 2 ' half note
N04 CON N01 / 4 ' quarter note
N08 CON N01 / 8 ' eighth note
N12 CON N04 / 3 ' quarter note triplet
N16 CON N01 / 16
N32 CON N01 / 32

' -----[Variables]---

Column #94: Gettin’ MIDI With It

Page 28 • The Nuts and Volts of BASIC Stamps (Volume 4)

eePntr VAR Word ' pointer to EE table
cmd VAR Byte ' command (on or off)
patch VAR Byte ' patch (voice)
notes VAR Nib ' number of notes to play
nTime VAR Word ' note timing
midi VAR Byte(6) ' up to 3 notes at once
chan VAR Nib ' channel

idx VAR Nib

' -----[EEPROM Data]---

Mystery DATA CP+0, $3B ' french horn
 DATA CP+1, $32 ' guitar
 DATA CP+2, $1E ' whistle

 DATA NN+0, 1, 069, 100, ND, Word N12
 DATA NX+0, 1, 069, 000
 DATA NN+0, 1, 072, 060, ND, Word N12
 DATA NX+0, 1, 072, 000
 DATA NN+0, 1, 069, 060, ND, Word N12
 DATA NX+0, 1, 069, 000
 DATA NN+0, 1, 077, 072, ND, Word N12
 DATA NX+0, 1, 077, 000
 DATA NN+0, 1, 072, 060, ND, Word N12
 DATA NX+0, 1, 072, 000
 DATA NN+0, 1, 069, 060, ND, Word N12
 DATA NX+0, 1, 069, 000
 DATA NN+0, 1, 077, 072, ND, Word N12
 DATA NX+0, 1, 077, 000
 DATA NN+0, 1, 072, 060, ND, Word N12
 DATA NX+0, 1, 072, 000
 DATA NN+0, 1, 069, 060, ND, Word N12
 DATA NX+0, 1, 069, 000
 DATA NN+0, 1, 077, 072, ND, Word N12
 DATA NX+0, 1, 077, 000
 DATA NN+0, 1, 072, 060, ND, Word N12
 DATA NX+0, 1, 072, 000
 DATA NN+0, 1, 069, 060, ND, Word N12
 DATA NX+0, 1, 069, 000

 DATA NN+1, 1, 081, 074, ND, Word N04
 DATA NX+1, 1, 081, 000
 DATA NN+1, 1, 081, 067, ND, Word N04
 DATA NX+1, 1, 081, 000
 DATA NN+1, 1, 081, 066, NN+2, 1, 081, 079, ND, Word N04
 DATA NX+1, 1, 081, 000, NX+2, 1, 081, 000
 DATA NN+1, 1, 081, 038, NN+2, 1, 088, 072, ND, Word N04
 DATA NX+1, 1, 081, 000, NX+2, 1, 088, 000

Column #94: Getting’ MIDI With It

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 29

 DATA NN+0, 1, 069, 100, NN+2, 1, 086, 079, ND, Word N12
 DATA NX+0, 1, 069, 000
 DATA NN+0, 1, 072, 060, ND, Word N12
 DATA NX+0, 1, 072, 000
 DATA NN+0, 1, 069, 060, ND, Word N12
 DATA NX+0, 1, 069, 000, NX+2, 1, 086, 000
 DATA NN+0, 1, 077, 072, NN+2, 1, 088, 080, ND, Word N12
 DATA NX+0, 1, 077, 000
 DATA NN+0, 1, 072, 060, ND, Word N12
 DATA NX+0, 1, 072, 000
 DATA NN+0, 1, 069, 060, ND, Word N12
 DATA NX+0, 1, 069, 000, NX+2, 1, 088, 000
 DATA NN+0, 1, 077, 072, NN+2, 1, 091, 082, ND, Word N12
 DATA NX+0, 1, 077, 000
 DATA NN+0, 1, 072, 060, ND, Word N12
 DATA NX+0, 1, 072, 000
 DATA NN+0, 1, 069, 060, ND, Word N12
 DATA NX+0, 1, 069, 000, NX+2, 1, 091, 000
 DATA NN+0, 1, 077, 072, NN+2, 1, 088, 080, ND, Word N12
 DATA NX+0, 1, 077, 000
 DATA NN+0, 1, 072, 060, ND, Word N12
 DATA NX+0, 1, 072, 000
 DATA NN+0, 1, 069, 060, ND, Word N12
 DATA NX+0, 1, 069, 000

 DATA NN+1, 1, 083, 074, ND, Word N04
 DATA NX+1, 1, 083, 000
 DATA NN+1, 1, 083, 065, ND, Word N04
 DATA NX+1, 1, 083, 000
 DATA NN+1, 1, 083, 065, ND, Word N04
 DATA NX+1, 1, 083, 000, NX+2, 1, 088, 000
 DATA NN+1, 1, 083, 045, ND, Word N04
 DATA NX+1, 1, 083, 000

 DATA $FF

' -----[Initialization]--

' -----[Program Code]--

Main:
 eePntr = Mystery
 GOSUB Play_EE
 END

' -----[Subroutines]---

Column #94: Gettin’ MIDI With It

Page 30 • The Nuts and Volts of BASIC Stamps (Volume 4)

Play_EE:
 READ eePntr, cmd ' get command
 IF (cmd < $FF) THEN
 SELECT cmd
 CASE $C0 TO $CF ' change patch
 READ (eePntr + 1), patch ' read new patch #
 SEROUT MidiOut, MidiBaud, [cmd, patch]
 eePntr = eePntr + 2

 CASE $80 TO $8F, $90 TO $9F ' note off or on
 READ (eePntr + 1), notes ' read number of notes
 FOR idx = 0 TO (notes * 2 - 1) ' read notes/velocities
 READ (eePntr + 2 + idx), midi(idx)
 NEXT
 SEROUT MidiOut, MidiBaud, [cmd, STR midi\(notes * 2)]
 eePntr = eePntr + 2 + (notes * 2)

 CASE ND ' note duration
 READ (eePntr + 1), Word nTime ' read note timing
 PAUSE nTime
 eePntr = eePntr + 3

 ENDSELECT
 GOTO Play_EE
 ENDIF
 RETURN

