
Writing External Objects for
Max 4.0 and MSP 2.0

Revision 11 of July 14, 2001

written by
David Zicarelli

zicarell@cycling74.com

Copyright © 2001 Cycling ‘74 — All rights reserved

Contents 2

Contents

Overview 5
About This Manual 6
Conventions 6

Basics 8
The Choice of Development Environments 8
Creating Projects Using Code Warrior Pro 4 8
Creating Projects Using Code Warrior Pro 6 9
Creating Projects Using Apple MPW 12
Header Files 15
Functions Prototypes 16
Object Header 16

Data Types and Argument Lists 17
The Initialization Routine 20

Routines for Defining Your Class 20
Reserved Resources 22

Messages 25
Basic Behavior 25
Routines for Binding Messages 26
Standard Message Selectors 28
Other Standard Messages 29
Messages from Max 30

Writing the Instance Creation Function 34
Inlets and Outlets 35
Routines for Instance Creation 35
Routines for Creating Inlets 36
Routines for Creating Outlets 38
Using Proxies 40

Elements of Methods 42
Routines for Using Outlets 42
Binbufs and the Max File Format 44
Binbuf Routines 46
Routines for Atombufs 52
Clock Routines 53
Using Clocks 55
Qelem Routines 56
Interrupt Level Considerations 58
Interrupt Level Routines 59

Essential Max Utilities 63
General Utilities 63
Memory Management Routines 69
File Routines 71
Routines for Iterating Through Folders 84
A File Handling Example 85

Advanced Facilities 87
Advanced Object Creation and Message Routines 87
Routines for Sending Untyped Messages 88
Using Untyped Messages 89
Table Access 90
Text Editor Windows 91
Access to expr Objects 93
Presets 95
Event and File Serial Numbers 97

Contents 3

Using Event Serial Numbers 98
OMS Access 99
Loading Max Files 99
Connecting Objects As Clients and Servers 101
Subscribing to the Error System 104
Scheduling with setclock Objects 105
Using the setclock Object Routines 107
Creating Schedulers 108
Operating System Access Routines 109

Objects With Windows 111
Window Messages 112
Menu Messages 117
Window Routines 124
Numericals 133

Writing User Interface Objects 138
The Box 138
The SICN 139
User Interface Object Creation Functions 139
User Interface Object Free Function 143
Messages for User Interface Objects 143
Routines for User Interface Objects 149
Color And User Interface Objects 155
Transparent Objects 159
Inspectors 162
QuickTime Timage Routines 164

Graphics Windows 169
Graphics Window Routines 169
Offscreen Routines 171
Sprite Routines173
A Sprite Example 177

Writing Objects for the Timeline 180
Registration 180
Writing an Action External 183

Writing Editors for the Timeline 186
Registering A Timeline Editor 186
Editor Instance Creation and the Event Structure 187
Editor Instance Creation Example 190
Editor Menu Function 191
Messages Sent to Editors By the Timeline 192
Scheduling Events 194
Messages for Editors of Editable Events 197
Routines For Drawing in Editors 200
Using Editor Drawing Routines 202
Event Position Conversion Routines 202
Routines for Drawing in the Timeline Legend 204

MSP Development Basics 206
The MSP Library 206
Creating MSP Projects 206
Project Resource File 207

Writing MSP Code 208
Include Files 208
Defining Your Object Structure 208
Writing the Initialization Routine 208
New Instance Routine 209
Special Bits in the t_pxobject Header 210
The dsp Method 211
The Perform Routine 214
The Free Routine 215

Contents 4

Handling MSP Parameters 216
A Filter Example 216

Access to MSP Global Information 221
Appendix A - Updating Externals for Max 4.0 223

What's No Longer Supported 223
Writing Objects that Work with Both Max 4.0 and Max 3.x 224
UI Object Changes 224
Signal Object Changes 226

Appendix B - Reserved Messages 227
Appendix C - Useful Symbols 232
Index 233

Overview 5

Writing External Objects for Max gives you an inside peek at the Max environment and
shows how it can be extended by creating shared libraries in the C language. This
document assumes some familiarity with Max from a user’s standpoint. However,
we’ll try to show the connection between the programming constructs presented and
how they appear to the user.

In writing an external object for Max, your task is to write a shared library that is
loaded and called by the “master environment” and in turns calls upon helpful
routines back in the master environment. You create a class, or template for the
behavior of an object. Instances of this class “do the work” of the object, when they
are sent messages. Your external object definition will:

• Define the class: its data structure, size, and how instances are to be created and
destroyed

• Define functions (called methods) that will respond to various messages,
performing some action

There are several types of code resources you can write. Normal Objects show up in
Patcher windows in New Object boxes with two lines at the top and bottom, like this:

User Interface Objects are a bit more complicated to write, but they can have any
appearance and behavior in a Patcher window, such as this hslider:

In addition, you can write external objects for the Timeline that function either as
Actions or Editors.

Typically, if you’ll be interfacing Max to the outside world or performing some
computation, you’ll write a normal object. Normal objects can also open their own
windows and dialog boxes. But they can’t do any drawing or event handling in the
Patcher window itself. To do any drawing or user interaction within a Patcher
window, you’ll need to do some extra work to make a user interface object.

As mentioned above, there are two phases of your object definition: class
initialization time and what could be called object behavior time. Your shared library
can be loaded when Max starts up if it’s placed in Max’s startup folder (usually
called max-startup), or it can be loaded whenever Max wants to create the first
instance of your object. At this time your object’s main function will be called, and it
should initialize its class. The main function is the only entry point your object will
define. By initializing the class, it will tell Max about all of the other functions
defined in the object. We’ll explain more about this process in chapter 4. After the

C H A P T E R 1

Overview

Overview 6

class is initialized, Max will not call routines in your shared library until someone
creates an object (instance) of your class. This happens…

• when a patcher file is read in

• when someone types the name of your object into a New Object box in a Patcher
window

• when duplicating an existing object of your class

Your object’s instance creation function will be called at this point. In this routine,
you’ll allocate memory for a new object of your class, and do additional initialization
of the fields in the object.

After the object has been created, it can receive messages. When a number is sent in
an object’s inlet, the object receives an int message (or a float message, if the number
is floating point).

You need to write a method to respond to this message. If you were an object that
performed addition, your int method might add two numbers together and send the
result out your outlet.

There are a number of predefined messages your object can respond to. You can also
define your own messages. Defining messages and associating methods with them is
done at initialization time when you’re setting up your class.

Finally, if your object is deleted, your object’s free function will be called. If you didn’t
allocate any extra memory inside your object (assigned to any of your object’s fields),
you need not have a free function. Otherwise, you should free the memory used by
these fields in this function.

About This Manual

This manual should be used in conjunction with the Example Objects supplied with
the Max Software Development Kit. Copying an example as the basis of your object
is the preferred method to start developing a Max external.

Conventions

The task of writing an external also involves a choice of C language development
environments. The examples assume the use of the Metrowerks CodeWarrior
environment, but the next chapter discusses getting started using either CodeWarrior
or Apple's MPW environments.

In this manual, the names of Max messages are printed like this (message) and
almost always lowercase. Names of existing (built-in) Max objects are in bold
(object). Other Max programming names and constructs (wind_drag) are in

Overview 7

Courier. And any messages you might see in the Max window will be printed in
Courier italic (Method not found).

Basics 8

The Choice of Development Environments

This chapter discusses preparing to write your object by choosing and configuring a
development environment, the include files you’ll need, and some of the general
techniques specific to Max externals you’ll need to use.

Traditionally, Max externals were developed with support of both 68K and PowerPC
processors. This is no longer the case - with Max 4 (and MSP 2), only PowerPC
development is supported.

The preferred environment for Max external development is Metrowerks'
CodeWarrior, and most of the examples in this manual assume the use of
CodeWarrior.

Creating Projects Using Metrowerks Code Warrior Pro 4

The quickest way to begin making a Max external is to duplicate the Template (CW
Pro4) project supplied in the Software Development Kit. Replace the file <replace
me>.c with your source file and you should be ready to make the project. You’ll
notice that the Template (CW Pro4) project includes a file called MaxLib. This is a
“stub library” that defines symbols allowing your external to link to the Max
application dynamically. This file is found in the MAX includes folder.

If you’re starting from scratch, here are the steps for making a CodeWarrior Pro 4
Max external project.

• Select the PPC Target panel in the Project Preferences editor. Set the Project Type
to be Shared Library and the File Name to be the name of your object. Set the
Creator to max2 and the File Type to iLaF. (If you want your external object to be
usable in both Max 4 and previous versions of Max, use the ???? type instead of
iLaF. But note that this type will not display an icon properly in Mac OS 9. When
you Make a PPC external object successfully, CodeWarrior places the object file in
the same directory as your Project, unless you change the Output Directory listed
in the Target Settings panel.

• The TemplatePPC project included in the Starter Templates folder is a
CodeWarrior Pro 4 project. It should work with Pro 3 and Pro 5 as well (although
Pro 5 will require a project format conversion).

C H A P T E R 2

Basics

Basics 9

<replace me>.c is included in the PowerPC target, and can be replaced with the
source file(s) used in your project. Other files included in the PowerPC target are:

• MaxLib, the Max shared library.

• MSL RuntimePPC.Lib, needed for runtime functions generated by the compiler.

• InterfaceLib, a shared library pointing to most of the Mac toolbox.

Creating Projects Using Metrowerks Code Warrior Pro 6

As with the CodeWarrior Pro 4 environment, the quickest way to put together a
CodeWarrior Pro 6 project is to use the Template (CW Pro 6) project found in the
SDK. If you want to make a project from scratch, however, follow these steps:

Create a new CodeWarrior project. The project stationery to use is "Mac OS C
Stationery", and (by convention) Project names end in ".mcp". Place this project in
the location of your choice, then hit the "OK" button.

Basics 10

Select MacOS Toolbox PPC as the Project Stationery in the next dialog. This will
determine which files are included, by default, in the project.

Basics 11

The Project window will be displayed with the default files. You can remove the
ANSI C file set, as well as the MSL RuntimePPC and Math libraries. You should add
the MSL ShLibRuntimePPC (found in the MacOS Support:Libraries:
Runtime:RuntimePPC:Libs folder of the Metrowerks compiler). Also add the
MaxLib library found in the MAX Includes folder of the SDK. Finally, add any
source and resource files as replacements for the SimpleAlert.c and
SimpleAlert.rsrc files.

Select the "Targets" tab and remove the "MacOS Toolbox PPC Debug" target.

Select the "MacOS Toolbox PPC Final Settings" option from the Edit menu, and
choose the PPC Target option on the selection list. Change the type of project to
"Shared Library", change the file name to the name of your external file, and change
the Creator and Type fields to max2 and iLaF, respectively.

Select the C/C++ Language Panel. You will want to deselect the Unused Arguments
option, since you will be using predetermined Max and MSP function signatures,
and will not want to see error messages on these functions. If you choose to allow
Unused Arguments warnings, you should use the CodeWarrior pragma unused to
denote unused parameters:

void do_this(int temp, int error) {
#pragma unused (temp)
error = do_something();
}

Basics 12

Finally, choose the PPC Linker Panel from the settings list. Change the main entry
point from __start to main (the standard name for the entry point procedure for MAX
externals).

Creating Projects Using the Apple MPW

Creating Max externals using MPW is relatively straightforward – you need to create
an appropriate makefile, then utilize the MPW Workbench to create a shared libaray
file. This will not be a tutorial on using MPW, but rather an overview of MPW
makefile layout required for a successful Max external build.

Before attempting to use the MPW development system for Max external
development, you should be fairly well-versed in basic MPW commands and
makefile construction. Two manuals that are important are “Introduction to MPW”
and “Building and Maintaining Program in MPW”, available as PDF files from
Apple’s web site (www.apple.com).

Creating a makefile for an MPW compile and link cycle is too complex for the
Build… command (or the CreateMake Commando dialog) normally used for build
file creation. If we look at the makefile for buddy.c (named buddy.make in the “03.
buddy” folder of the Max SDK directory), you will see some changes to the standard
simple build:

Directory definitions - these should be altered for your system.
==

MaxDir = Macintosh HD:SDK Examples:MAX includes:

Basics 13

The above line creates a variable with the full directory path to your Max includes
folder. You will need to change these lines to match your computer system. The next
section contains file and directory information used by the build functions.

File and directory definitions - these should be relative to the above.
===

MAKEFILE = buddy.make

•MondoBuild• = {MAKEFILE} # Make blank to avoid rebuilds
when makefile is modified

ObjDir = :

Includes = ∂
 -i "{MaxDir}"

Sym-PPC = -sym off

The Includes variable has been created to point to the Max includes directory (in
addition to the normal include search paths). Next is a section that sets the options
used by the compiler.

Compiler Settings
note: -w 35 supresses "parameter not used" messages, and can be removed.
==

SrcFiles = ∂
 "buddy.c"

PPCCOptions = ∂
 {Includes} ∂
 {Sym-PPC} ∂
 -opt speed,unroll,unswitch ∂
 -typecheck relaxed ∂
 -w 35

The SrcFiles variable represents the C language files that will need to be compiled
and linked. In more complicated externals, you may have a number of .c files to be
compiled. Changes to a standard MPW makefile include the –opt setting (with
optimization for speed, loop unrolling and unswitching), -typecheck (set to relaxed –
important for many MaxLib calls) and the –w warning switch (with error 35
supressed – eliminating warning for unused parameters).

Used Files - Relative to the exported Extern variable.
==

ObjFiles-PPC = ∂
 "{ObjDir}buddy.c.o"

LibFiles-PPC = ∂

Basics 14

 "{MaxDir}MaxLib" ∂
 "{SharedLibraries}InterfaceLib" ∂
 "{SharedLibraries}StdCLib" ∂
 "{SharedLibraries}MathLib" ∂
 "{PPCLibraries}StdCRuntime.o" ∂
 "{PPCLibraries}PPCCRuntime.o" ∂
 "{PPCLibraries}PPCToolLibs.o"

A section containing lists of files used by the linker is found next. This provides the
linker with both object and library files to be included in the build. The list for the
buddy project is relatively small, but contains all of the routines necessary for this
object. Note the addition of the MaxLib to the list of LibFiles.

Build Rules
===========

buddy.c.o ƒ buddy.c {•MondoBuild•}
{PPCC} buddy.c -o buddy.c.o {PPCCOptions}

buddy.r ƒ buddyµ.rsrc {•MondoBuild•}
DeRez buddyµ.rsrc > buddy.r

buddy ƒƒ buddy.c.o {•MondoBuild•}
PPCLink ∂

-o {Targ} ∂
{ObjFiles-PPC} ∂
{LibFiles-PPC} ∂
{Sym-PPC} ∂
-mf -d ∂
-t 'iLaF' ∂
-c 'max2' ∂
-xm s ∂
-fragname "buddy" ∂
-export main ∂
-main main

buddy ƒƒ buddy.r {•MondoBuild•}
Rez buddy.r -a -o buddy

Finally, the Build Rules section is used to determine the file builds that occur based
on the dependencies. Changes to a standard MPW makefile include the inclusion of
type and creator information (using the –t and –c options), the –fragname option
(which determines the output name) and identification of the main routine (the main
routine from the source file is the main entry point for Max externals).

Once the makefile is created, you build the external by setting the current directory
to the Max external project directory (using the Set Directory command of the MPW
shell). To build the external, issue a “BuildProgram <external>” command – where
<external> is the name of the makefile and external source you are building.

Basics 15

Using this above information, as well as referring to the MPW makefiles included
with each example project, should help you begin creating externals using the MPW
programming environment.

Header Files

A number of necessary C header files are provided in the folder MAX includes.
They should be included in your source files as follows:

ext.h Required for all MAX external objects.

ext_proto.h Used by ext.h when compiling a PowerPC external.

ext_support.h Used only for 68K externals, and not maintained.

ext_mess.h Not necessary to include directly. Used by ext.h.

ext_common.h Commonly used macros and definitions.

ext_qtimage.h Scaling definitions for Quicktime image handling.

ext_sndfile.h A structure typedef for a sound file.

ext_string.h Prototypes for string handling functions.

ext_path.h Needed to provide system non-specific file path information
(Chapter 8).

ext_wind.h Needed for objects that put up their own windows (Chapter
10).

ext_user.h Used when writing user interface objects (Chapter 11).

ext_colors.h Color palette defitions for user interface objects (Chapter 11).

ext_menu.h Needed for methods that respond to the chkmenu message
(Chapter 10).

edit.h The data structure for the text editor (Chapter 9).

ext_edit.h Used when interfacing to the text editor window (Chapter 9).

ext_anim.h Needed for objects that use the graphic window or sprites
(Chapter 12).

ext_expr.h Needed when using the interface to the expr object (Chapter 9).

ext_numc.h Needed when using the Numerical routines (Chapter 10).

ext_oms.h Needed when writing an object that uses OMS routines or data
structures. You will also need to include OMS.h and
(potentially) other OMS-related header files.

ext_midi.h Needed when accessing MIDI Manager structures (see timein
example code).

ext_event.h Needed when writing Timeline Editors (Chapter 14).

ext_track.h Needed when writing Timeline Editors (Chapter 14).

You may also need specific include files related to Macintosh data structures you
deal with.

Basics 16

As you read through this document, you may notice that the type definitions for
many of the Max structures discussed here are listed in ext.h as pointer to void
(void *). This is done when the internal structure is not important for use.

Function Prototypes

Max provides you with a sizable number of functions to assist you in writing
external objects. These are often the same functions that the objects built into Max use
to carry out their work. These functions present a programming interface similar to
the one you’d have available writing the object in Max itself.

Within the Max application, your object is dynamically linked at runtime when it is
loaded. Loading occurs either when Max starts up and your object is in the max-
startup folder, when it is loaded explicitly using the Install… command in the File
menu, or when someone types the name of your object into an object box or reads in
a patcher file containing a reference to your object.

This dynamic loading allows you to use prototyped Max function calls, with
complete compile-time error checking. If you want to refer to these prototypes, open
the file ext_proto.h in the MAX includes folder.

Object Header

Each Max external object needs a C structure definition. If you’re defining a normal
object, it needs to start with a structure called a t_object. This field is not a pointer,
but an entire structure contained inside your object. Typically, Max objects have
followed the UNIX convention of starting fields of data structures with a lowercase
letter followed by an underscore. The letter is normally the first letter of the name of
the structure. Here’s a hypothetical structure for an t_alarmclock object.

typedef struct alarmclock {
t_object a_ob; /* must be first in any non UI object */
long a_hours;
long a_minutes;
long a_seconds;
long a_alarmset;

} t_alarmclock;

The t_object contains references to your object’s class definition as well as some
other information. This class reference allows an instance of your class to respond to
messages in the right way.

You’re free to use any data type you wish as a field in your object’s structure. Keep in
mind that Max stores floating point numbers internally as type float, so any extra
precision not contained in a float may be lost. (This doesn’t mean you can’t
perform extra-precision computation inside your object.) In addition, integers are
passed from Max to functions you write as longs, and communicated to outlets and
most other Max structures as longs.

Data Types and Argument Lists 17

Max can provide you with the service of type checking arguments to messages
destined for your object. The two functions setup and addmess take argument type
specification lists used for performing this task.

Your object creation function is called in response to a message sent to a special new
object. You pass the same kind of argument type specification list to setup as you do
when defining the arguments to your own messages. In the case of a message to the
new object, the name of the class is the “message selector” itself, and the arguments
are what follows the class name (the 20 in + 20, for example).

The function addmess, like setup, takes argument type specification lists. For
example, suppose we want to define a message search that requires two long integers
as arguments. The user might type such a message into a Max message box
connected to our object.

In this case, search is the message, and 304 and 228 are the arguments. The argument
type list would look like this:

A_LONG, A_LONG, 0

Argument type lists always end with a zero (defined as A_NOTHING).

You would declare the arguments to the function you write (that respond to the search
message) as follows:

void myobject_search (myObject *x, long arg1, long arg2);

Floating point numbers can be specified with A_FLOAT, and Symbols (text words)
with A_SYM.

If you want arguments to be optional, you can use A_DEFLONG, A_DEFFLOAT, and
A_DEFSYM. These default missing arguments to 0, 0.0, and the empty symbol ("")
respectively.

In each case where you declare explicit arguments, Max will pass arguments of the
specified type directly to your method. If the arguments are of the wrong type, Max
will indicate an error to the user.

To review, here are the basic type list specifiers:

A_NOTHING Ends the type list.

A_LONG Type-checked integer argument

A_FLOAT Type-checked float argument

C H A P T E R 3

Data Types and Argument Lists

Data Types and Argument Lists 18

A_SYM Type-checked symbol argument

A_OBJ Pointer argument (obsolete)

A_DEFLONG Type-checked integer argument that defaults to 0

A_DEFFLOAT Type-checked float argument that defaults to 0

A_DEFSYM Type-checked symbol argument that defaults to 0

A_GIMME You can only specify up to seven arguments in a list. However, you
can specify that Max just hand you the arguments as an array of
t_atoms (a structured type defined below) if you use the following
type list:

A_GIMME, 0

This allows you to type check the arguments yourself, and no limit is placed on the
number of arguments that can be included in such a message.

An Atom has the following form:

union word /* union for packing any data type */
{

long w_long;
float w_float;
t_symbol *w_sym;
t_object *w_obj;

};

typedef struct atom /* an Atom that is a typed datum */
{

short a_type; /* from the definitions above*/
union word a_w;

} t_atom;

If you declare a method to receive its arguments with A_GIMME, they’ll be passed as
an argc, argv list (vaguely familiar to UNIX C programmers). argc is the number of
arguments, and argv points to the first of argc t_atoms in an array. You’re also
passed the t_symbol containing the message itself. If your creation function gets its
arguments a la A_GIMME, this t_symbol is the name of your class. This is the function
declaration that corresponds to an A_GIMME type list.

void myMethod (myObject *x, t_symbol *s, short argc, t_atom
*argv);

x Your object.

s The message selector as a t_symbol.

argc Count of t_atoms in argv.

argv Array of arguments.

To type-check the arguments yourself, you look at the a_type field of a t_atom.
The possible values are A_LONG, A_SYM, and A_FLOAT (never A_DEFLONG,
A_DEFSYM, or A_DEFFLOAT). Here’s an example method that prints out its

Data Types and Argument Lists 19

arguments that could be used as a model for type checking and processing
arguments:

void myMethod(myObject *x, t_symbol *s, short argc, t_atom *argv)
{

short i;

for (i=0; i < argc; i++) {
switch (argv[i].a_type) {

case A_LONG:
post("argument %ld is a long: %ld", (long)i,

argv[i].a_w.w_long);
break;

case A_SYM:
post("argument %ld is a symbol: name %s", (long)i,

argv[i].a_w.w_sym->s_name);
break;

case A_FLOAT:
post("argument %ld is a float: %lf", (long)i,

argv[i].a_w.w_float);
break;

}
}

}

The character string (t_symbol) argument to your method is the name of the
message that invoked it. You may have several message names bound to the same
method. For example:

addmess(myObject_doit,"doit", A_GIMME, 0); /* bound to doit */
addmess(myObject_doit,"finger", A_GIMME, 0); /* bound to finger */

If you want to know when your method was invoked with the doit message, check to
see if the t_symbol s is equal to the doit symbol, using the following technique:

void myobject_doit(myObject *x, t_symbol *s, short argc, t_atom *argv)
{

if (s == gensym("doit")) {
post("Called as a result of receiving the message doit");

}
}

Note: gensym is a function that returns the t_symbol associated with a character
string and is described in Chapter 7.

The Initialization Routine 20

Your shared library contains only one entry point known to the outside world when
it is loaded—the starting address of your function main. Your main function is
called once and only once—when the code resource is loaded. It initializes the class
for your object and should look something like this:

void *myobject_class; /* points to your class */

void *myobject_create(void);
void myobject_free(myObject *x);

void main(void *p)
{

setup(&myobject_class, myobject_create, myobject_free,
(short)sizeof(myObject), 0L, 0);
/* allocates class memory and sets up class */

/* add messages here using addmess, addint, addbang, etc. */
/* copy any resources here using rescopy */

}

Routines for Defining Your Class
This section describes some of the functions you’ll use within the initialization (main)
routine.

setup

Use the setup function to initialize your class by informing Max of its size, the name
of your functions that create and destroy instances, and the types of arguments
passed to the instance creation function.

void setup (t_messlist **class, method createfun,

method freefun, short classSize,
method menufun, short types...);

class A global variable in your code resource that points to the initialized
class.

createfun Your instance creation function.

freefun Your instance free function (see Chapter 7).

C H A P T E R 4

The Initialization Routine

The Initialization Routine 21

classSize The size of your objects data structure in bytes. Usually you use the
C sizeof operator here.

menufun Used only when you’re defining a user interface object. It’s the
function that gets called when the user creates a new object of your
class from the Patcher window’s palette. Pass 0 if you’re not
defining a user interface object (how to write this function is
discussed in Chapter 11).

types A standard Max type list as explained in Chapter 3. The final
argument of the type list should be a 0. This list specifies the
arguments that are expected when a new instance of your class is
created. These would be the arguments that the user types in after
the name of your class.

As an example, imagine that you want to define a class for an object called + to accept
one integer as an argument. The value 20 will be passed to the object’s instance
creation function.

Here’s the structure definition for such a class.

typedef struct myobj {
struct object m_ob;
long m_watchtower;

} Myobj;

Here are the prototypes of the creation and free functions.

void *myobj_new (long arg);
void myobj_free (MyObj *x);

Here is the global variable that points to the class .

void *myobj_class;

Here is beginning of the initialization routine, with the call to setup.

void main(void *p)
{

setup (&myobj_class, myobj_new, myobj_free,
 (short)sizeof(Myobj), 0L, A_DEFLONG,0);

/* additional code will go here */
}

After calling setup, you’ll have a well-defined class that doesn’t know how to do
anything. In order to make it useful, you need to make the class respond to messages.
This means that a t_symbol (such as the word bang) is bound to a function you write
(often called a method). We’ll discuss the functions you’ll use to do this in a moment.
There are functions are designed to make it easy to add standard messages to your

The Initialization Routine 22

class, along with addmess, which allows you to specify novel messages and give
them arguments that will be type-checked for you by Max.

rescopy

Use rescopy to copy any resources from your external object’s code resource file
you want to use after your initialization routine is finished.

void rescopy (OSType resType, short resID)

resType The four character resource type of the resource you wish to copy.

resID The ID of the resource you wish to copy.

The file that contains your code resource along with any other resources is closed
after initialization time. That means that if you wish to use any Macintosh resources
such as dialogs or menus inside your object’s methods, you’ll need to copy them out
of your code resource file. rescopy is a function that copies a resource you specify
from your original file to a temporary resource file, called “Max Temp.” This file is
placed in the Temporary Items folder. If the computer crashes while Max is running,
the file is placed in the trash.

rescopy is intended to be used only at initialization time. It should work even
when running Max on locked media. After a resource has been copied, you can
access it like you would any resource. rescopy returns 0 if successful, otherwise an
error message will appear in the Max window and rescopy will return -1. The name
of the resource, if there is one, is preserved when the resource is copied.

resnamecopy

Use resnamecopy to copy a resource by name from your external object’s code
resource file that you want to use after your initialization routine is finished.

void resnamecopy (OSType resType, char *name)

resType The four character resource type of the resource you wish to copy.

name A C string naming the resource you wish to copy.

resnamecopy functions identically to rescopy except that it copies a resource
specified by name rather than ID. The ID of the resource is preserved when the
resource if copied.

Reserved Resources

Resources have to be numbered in such a way as to avoid conflicts with Max’s own
resources and those of other external objects. If you’re curious about Max’s resource
IDs for a given type, just look at the Max application file in ResEdit. Here are
reserved ranges in Max for some of most common resource types.

The Initialization Routine 23

ALRT 1000-1099, 1300-1399

CNTL 1000-1099

DITL 257, 1000-1099, 1300-1399

MENU 128-255

DLOG 257, 1000-1099, 1300-1399

STR# 1000-1199, 3000-3799, 4000-4099, 5000-5099, 7000-7099

PICT 344, 501-509, 888, 4200-4299, 8800-8899, 14914

In addition, the externals that come with Max use IDs in the range from 3000-3700 for
resources such as STR#, DITL, and DLOG. You would do well to avoid this range.

alias

Use the alias function to allow users to refer to your object by a name other than
that of your shared library.

void alias (char *name)

name An alternative name for the user to use to make an object of your
class.

This function allows users to refer to your object by a name other than the name of
the shared library. This might come in handy if you’re writing an external object that
could have a number of possible manifestations, such as a shape drawing object that
could create both ovals or rectangles. If you call setup with a type list of A_GIMME
(this is explained below) your object creation function will be able to find out the
name the user typed to create the object.

However, it’s not quite that simple! If the user wants to load your file dynamically
when typing the name of your object, the filename has to be the same as the name of
the object. Thus, if you use alias, you should inform the user that your object needs
to be loaded at startup (or by choosing Install… from the File menu), otherwise the
aliased names will result in “no such object” errors when they are first referenced.

This problem can be alleviated somewhat using the alias feature of the Mac OS, since
Max can resolve file aliases to external objects. You can then create file aliases that
correspond to the names you’ve provided with the Max alias function. If you have an
external object henry with an alias name hank, select the Max external file named
henry and choose Make Alias from the File menu in the Finder, then change the
name from henry alias to hank.

finder_addclass

Use finder_addclass to add your object’s name to the New Object List window
that appears when the user inserts an object box into a patcher window.

void finder_addclass (char *category, char *classname);

The Initialization Routine 24

category The general category in which your object should be classified.

classname The name of your object, or one of its aliases.

The categories are listed on the left side of the window.

If you pass 0L for category, your classname will be added only to the “All
Objects” list. If you pass a name that is not among the current categories, a new
category will be created automatically. To view the current list of category names,
please refer to the New Object List window in Max.

You may call finder_addclass as many times as you like, either to install the
name of your object under a number of different categories (try to restrain yourself),
or to install alias names for your object. Here’s what would be necessary to install an
object called oval (and its alias rect) in the Graphics category.

alias("rect");
finder_addclass("Graphics","oval");
finder_addclass("Graphics","rect");

finder_addclass should not be used for user interface objects. These are accessed
through the palette at the top of a patcher window (or in the contextual menu), not
through the New Object List.

Messages 25

Your object will do its work by responding to messages. Normally, objects receive
numbers (int and float messages) in their inlets, process them, and send other
messages out their outlets. However, arbitrary messages that begin with a character
string can be sent to an object with a Max message box object.

The Max message box can also send messages to objects that are not directly
connected to it. A Symbol after a semicolon will be the name of a receiver of the rest
of the message. Any object that binds itself to this Symbol (see the explanation of
binding in the description of the Symbol data structure below) will then receive the
message. For example, the patch below shows the receive goo object can receive a bang
message (and light up the button) without being directly connected to the message
box that’s sending it. When a receive object is created, it connects itself to its Symbol
argument (in this case goo).

Basic Behavior

Normally, the “defining” thing your object does with a number should be in the
method that responds to an integer in the left inlet (the int message). A common
convention is that when a Max object receives a bang message, it repeats the action
performed when an integer in the left inlet was received, using the most recently
received value. If this makes sense for your object, you will want to store the value
received in an int message inside your object.

You’ll get a different message when a number is sent to your object through an inlet
other than the leftmost one. The leftmost inlet gives you an int message whereas
other inlets give you in1, in2 etc. (in1 is associated with the inlet next to the leftmost
one, and the in-number increases as you move to the right, assuming you’ve done the
proper set up work detailed below).

In most cases, you’ll want the leftmost inlet to cause the object to output value or
perform some kind of action, while the other inlets are used to store additional
information needed when the action is taken.

C H A P T E R 5

Messages

Messages 26

As an example, consider the noteout object. Its leftmost inlet specifies the pitch of the
note to be played, while the other inlets set the MIDI channel and velocity. The
internal structure of noteout looks something like this:

typedef struct noteout {
t_object n_ob;
short pitch, velocity, channel;

} Noteout;

The noteout object has a method for each of its three inlets:

int set pitch, send MIDI note message using current velocity and MIDI
channel

in1 set velocity

in2 set MIDI channel

By the way, if you send a list of three integers to an object such as noteout that has
three inlets, Max will separate the list into the three individual messages—the third
number will be sent as an in2 message first, then the second number will be sent as
in1, and finally the first number will be sent as int. This behavior will not occur if your
object has a method that responds to a list message (see the discussion of inlet_new
below for more information about list methods).

After writing our three integer methods, we’d also want to add a bang method,
which sent a MIDI note message using the current values of pitch, velocity, and MIDI
channel stored in the object.

Adding many ways to accomplish the same task adds flexibility to how your object
can be used. For example, Max would be a lot harder to use if noteout had only one
inlet and required a list of three numbers every time you wanted to play a note. On
the other hand, allowing people to play notes by sending a list of three numbers
might help someone accomplish what they want to do more easily.

Routines for Binding Messages
These routines are used in your initialization routine, after calling setup, to bind
messages to functions you write in your class (what we refer to as methods). There
are simplified routines for the most commonly used messages, as well as addmess,
which is usable for binding any message.

addbang

Used to bind a function to the common triggering message bang.

void addbang (method mp);

mp Function to be the bang method.

Messages 27

addfloat

Use addfloat to bind a function to the float message received in the leftmost inlet.

void addfloat (method mp);

mp Function to be the float method.

addftx

Use addftx to bind a function to a float message that will be received in an inlet other
than the leftmost one.

void addftx (method mp; short inlet);

mp Function to be the float method.

inlet Number of the inlet to connect with this method. 1 is the first inlet
to the right of the left inlet.

addint

Use addint to bind a function to the int message received in the leftmost inlet.

void addint (method mp);

mp Function to be the int method.

addinx

Use addinx to bind a function to a int message that will be received in an inlet other
than the leftmost one.

void addinx (method mp; short inlet);

mp Function to be the int method.

inlet Number of the inlet connected to this method. 1 is the first inlet to
the right of the left inlet.

Note: This correspondence between inlet locations and messages is not automatic,
but it is strongly suggested that you follow existing practice. You must set the
correspondence up when creating an object of your class with proper use of intin
and floatin in your instance creation function (see Chapter 6).

addmess

Use addmess to bind a function to a message other than the standard ones described
above.

Messages 28

void addmess (method mp; char *sym; short types...);

mp Function you want to be the method.

sym C string defining the message.

types One or more integers specifying the arguments to the message, in
the standard Max type list format (see Chapter 3).

The addmess function adds the function pointed to by mp to respond to the message
string sym in the leftmost inlet of your object. Type checking of the message’s
arguments can be done by passing a list of argument type specifiers. The list must
end with a 0 (A_NOTHING). The maximum number of type-checked arguments is 7.

Standard Message Selectors
This section describes some of the standard messages Max objects send and receive
besides int, bang, and float.

anything

If you want to have a method that responds to any message that wasn’t handled by
your other methods, you can bind a function to the name anything using addmess.

BINDING

addmess (myObject_anything, "anything", A_GIMME, 0);

DECLARATION

myobject_anything (myObject *x, t_symbol *message,
short argc, t_atom *argv)

message The name of the message received.

argc Number of arguments (Atoms) in the argv array.

argv Array of the message arguments.

As an example, in the following patch, the prepend object receives the message cheese
4 5 6. In its anything method, argc would be 3 and argv would contain t_atoms with
the numbers 4, 5, and 6. message would be the symbol (not the t_atom) cheese.

Messages 29

list

This message is sent to your object when a message starts with a number. A list is an
array of two or more ints, floats, or t_symbols. The first number will always be an int
or float.

BINDING

addmess (myObject_list, "list", A_GIMME, 0);

DECLARATION

myobject_list (myObject *x, t_symbol *msg, short argc,
t_atom *argv)

msg The name of the message received.

argc Number of values (t_atoms) in the argv array.

argv Array of t_atoms containing the list.

Note that lists may contain t_atoms of type A_LONG, A_FLOAT, and even A_SYM,
although a t_symbol will never be the first element in a list. The t_symbol argument
msg is unimportant and should be ignored. If the user clicked on the message box
below the prepend object’s list method would be called, and argv would contain
t_atoms with the numbers 7, 8, and 9 (in order).

Other Standard Messages

If you’re planning to use a specific word as a message, try to use a word that might
already be in use in existing Max objects. These words include:

set N Sets a value without causing output

start Starts something, or use bang or a non-zero integer

stop Stops something, or use 0

record

append

read S Read a file (also use import), S is an optional name

write S Write a file (also use export), S is an optional name

next Output the next value, go to the next thing

prev Output the previous value, go the previous thing

goto N Set the next or prev counters to N

size N Set size to N

Messages 30

zero Set to all zeros

clear Delete, erase, set to zero. Optionally, an argument might specify
what should be cleared, while clear with no argument should clear
(or zero) everything.

length Output your length

Messages from Max
Here are some predefined messages you may want to implement.

enable and disable

These messages are sent when the user clicks on the MIDI icon in a Patcher window
title bar.

BINDING

addmess (myObject_enable, "enable", 0);

DECLARATION

myobject_enable (myObject *x);
myobject_disable (myObject *x);

When turning the MIDI icon into an X, the disable message is sent to all the objects in
the window. Of existing Max objects, only MIDI objects (i.e. notein, noteout)
respond to this message, but if your object communicates directly with the outside
world in a manner analogous to MIDI, you might consider disabling communication
in response to a disable message and re-enabling it in response to an enable message.
Always create your object in an enabled state because you’ll never receive an initial
enable message.

info

The info message is sent to your object if it is selected in an unlocked Patcher window
and the user chooses Get Info… from the Max menu.

BINDING

addmess (myObject_info, "info", A_CANT, 0);

DECLARATION

myobject_info (myObject *x, t_patcher *parent,
t_box *container)

Messages 31

parent The patcher that contains your object.

container The box that contains your object (see Chapter 11 for more
information about boxes).

This might be a time to put up a dialog box to set or display your object’s parameters.
You might also take this opportunity to put up an About box to brag about how
great you are for being able to write a Max external object. Also, the info message can
be used to display an Inspector patch (described in chapter 11).

The definitions of t_patcher and t_box are in ext_user.h. It is likely that you will
not need to access your Patcher or your Box in this method, in which case you can
declare your info method as:

void myobject_info (myObject *x, void *p, void *b);

preset

This message is sent by the preset object to request that your object provide its
current state.

BINDING

addmess (myObject_preset, "preset", A_CANT, 0);

DECLARATION

void myobject_preset (myObject *x);

You respond to a preset message by supplying a message that will restore your object
to its current state. This may be done with a set or int message, or something more
complex if your object has a lot of different data that can be changed. This will allow
your object to work with the built-in preset object.

The functions preset_int, preset_set, and preset_store are useful in writing
your preset method. See the section on Presets in Chapter 9 for descriptions of these
routines.

loadbang

When a Patcher window is loaded from a file, each object it contains can receive the
loadbang message.

BINDING

addmess (myObject_loadbang, "loadbang", A_CANT, 0);

DECLARATION

void myobject_loadbang (myObject *x);

There is a built-in Max object called loadbang that sends out a bang when a Patcher
window is loaded. Your object can respond to the loadbang message in any way that it
wants. Before implementing a method that responds to loadbang, keep in mind that the
user can connect your object to the outlet of a loadbang object to perform

Messages 32

initialization if necessary. Note that you do not get the loadbang message when the
user creates a new instance of your object in the Patcher window, only when a Max
file containing your object is loaded from disk.

assist

This message is sent to your object when the user has positioned the cursor over one
of your object’s inlets or outlets and the Assistance area of the Patcher window is
visible.

BINDING

addmess (myObject_assist, "assist", A_CANT, 0);

DECLARATION

void myobject_assist (myObject *x, void *box, long msg,
long arg, char *dstString);

box The box that contains your object (see Chapter 11 for more
information about boxes). This argument is almost never used in
responding to the assist message.

msg One of two values, ASSIST_INLET (1) or ASSIST_OUTLET (2),
indicating whether you’re describing an inlet or an outlet.

arg The inlet or outlet number, starting at 0 for the leftmost inlet or
outlet.

dstString Where you should copy a C string with the Assistance information
for this inlet or outlet.

To respond to the assist message, you should tell the user about the function of the
inlet or outlet in 60 characters or less. See example Assistance messages from existing
Max objects. You can even get fancy and refer to specific arguments or the state of the
instance, although you aren’t sent new assist messages when your state changes.

Normally you’ll use the function assist_string in conjunction with an
internationalizable STR# resource to do all the work necessary to respond to this
message, but you can create the string manually if you want, as in the following
example.

void myobject_assist (myObject *x, void *b, long msg, long arg,
char *dst)

{
if (msg==ASSIST_INLET) {

switch (arg) {
case 0:

strcpy(dst,"Start Clock Ticking");
break;

case 1:
strcpy(dst,"Set Clock Speed in Milliseconds");
break;

case 2:
strcpy(dst,"Set Clock Erratic Factor (0-99)");
break;

Messages 33

}
} else if (msg==ASSIST_OUTLET) {

strcpy(dst,"Clock Ticks");
}

}

save

Having a save method permits you to save more of the state of your non user-
interface object than was typed into an object box by the user.

BINDING

addmess (myObject_save, "save", A_CANT, 0);

DECLARATION

void myobject_save (myObject *x, Binbuf *dest);

dest The destination for the message you create to restore your object
from a file.

The details of implementing this method will be provided in the discussion of
binbuf_vinsert in Chapter 7. Essentially, the idea is to format a message that can
be sent to the new object to recreate your object with its current parameters, then use
a function to copy this message into the data buffer dest. Some save methods, such
as the one used by the coll object to save its current data, can be more elaborate and
often involve messages that are sent to the newly created instance of an object that
serve to restore its internal state.

Note: If your object implements a save method, it might wish to mark its owning
patcher window as having unsaved data when the user changes its internal state. See
the routine patcher_dirty in Chapter 11 for information about how to do this.

Writing the Instance Creation Function 34

Your instance creation function is called when a new copy of your object needs to be
made, either as the result of a file being read in or the user typing its name into an
object box (or if it’s a user interface object, choosing it from the Patcher window
palette).

As with all functions you write that will be called by Max, the arguments to your
object’s instance creation function will be based on an argument type list you
specified. Unlike all other methods, you specify the types for the instance creation
function’s arguments with the call to setup at initialization time, rather than with
addmess.

The instance creation function’s arguments are identical to those described in the
Data Types and Argument Lists chapter with one exception. Since the message that’s
being responded to was not sent to an object of your class, but to the special new
object, the first argument will not be a pointer to an object of your class. Instead of
passing a pointer to the new object, which would have served no purpose, Max
simply skips the first argument altogether. For example, if your creation function’s
argument type list were…

A_DEFLONG, 0

your creation function should be declared as

void *myObject_new (long arg);

The task of your instance creation function is to make an instance of your class. The
creation function should return a pointer to the created object or 0 if there was a
problem.

The first thing you will typically do is to call newobject to allocate memory for an
instance of your class and do system-level initialization needed by all Max objects.
Next, you’ll perform additional initialization of your object’s fields. For example, you
might want to add an Outlet, a Clock (so the object can schedule itself), or a Qelem (if
the object will draw anything or perform any action that cannot take place at
interrupt level). Some fields could be assigned values based on the arguments your
object creation function received. For example, when you type…

…the + object’s creation function takes its argument 20 and stores it inside the newly
created object.

C H A P T E R 6

Writing the Instance Creation Function

Writing the Instance Creation Function 35

Note: If you want to access your object’s Patcher or its t_box structure in the
Patcher, you must grab a reference to it in your object creation function. The
technique for doing this is shown in the description of the function patcher_dirty
in Chapter 11.

Inlets and Outlets

Inlets and Outlets are the way your object normally communicates with other objects.
They are structures that keep track of connections between objects and facilitate
sending messages “through” these connections.

When your object is created, you’re usually given an Inlet. It is referenced in the
t_object structure that should be the first field of your object. Notice that some
objects don’t show inlets. This is because they set a special flag in their class field that
says, “Don’t give me an inlet.” You can set this flag yourself immediately before
calling newobject in your instance creation function.

void *myclass; /* initialized by call to setup */

void *myobject_new (void)
{

myObject *x;

x = newobject(myclass);
class_noinlet(myclass);

/* additional initialization */

return (x);
}

Routines for Instance Creation
These functions cover making a new instance of your class and giving it inlets and
outlets.

newobject

Use newobject to allocate the space for an instance of your class and initialize its
object header.

void *newobject (void *class);

class The global class variable initialized in your main routine by the
setup function.

You call newobject when creating an instance of your class in your creation
function. newobject allocates the proper amount of memory for an object of your
class and installs a pointer to your class in the object, so that it can respond with your
class’s methods if it receives a message.

Writing the Instance Creation Function 36

Routines for Creating Inlets
There are several functions for creating additional inlets that are used in your object’s
creation function. You don’t need to ever touch an inlet once it is created, so these
functions do not return pointers to the created inlets. The main purpose of an inlet is
just to exist, so that outlets can sink their teeth into them. Communication between
objects in Max is driven entirely by actions performed with outlets. Note that inlets
do not need to be freed by your object in its free method; this is taken care of for you.

intin

Use intin to create an inlet typed to receive only integers.

void intin (void *object, short index)

object Your object.

index Location of the inlet from 1 to 9. 1 is immediately to the right of the
leftmost inlet.

intin creates integer inlets. It takes a pointer to your newly created object and an
integer n, from 1 to 9. The number specifies the message type you’ll get, so you can
distinguish one inlet from another. For example, an integer sent in inlet 1 will be of
message type in1 and a floating point number sent in inlet 4 will be of type ft4. You
use addinx and addftx to add methods to respond to these messages.

The order you create additional inlets is important. If you want the rightmost inlet to
be the have the highest number in- or ft- message (which is usually the case), you
should create the highest number message inlet first. Creating four additional integer
inlets (for a total of five) would provide the following:

floatin

Use floatin to create an inlet typed to receive only floats.

void floatin (void *object, short index)

Writing the Instance Creation Function 37

object Your object.

index Location of the inlet from 1 to 9. 1 is immediately to the right of the
leftmost inlet.

This function creates a floating-point inlet. It’s analogous to intin for floating point
numbers.

inlet_new

Use inlet_new to create an inlet that can receive a specific message or any message.

void inlet_new (void *object, char *msg)

object Your object.

msg Character string of the message, or 0L to receive any message.

inlet_new ceates a general purpose inlet. You can use it in circumstances where
you would like special messages to be received in inlets other than the leftmost one.

To create an inlet that receives a particular message, pass the message’s character
string. For example, to create an inlet that receives only bang messages, do the
following…

inlet_new (myObject,"bang");

To create an inlet that can receive any message, pass 0 for msg…

inlet_new (myObject,0);

Proxies are an alternative method for general-purpose inlets that have a number of
advantages. If you create multiple inlets as shown above, there would be no way to
figure out which inlet received a message. See the discussion in the Using Proxies
section below.

inlet_4

Use inlet_4 to make an inlet that allows control over the translation of incoming
messages.

void inlet_4 (void *owner, void *dst, t_symbol *in,
t_symbol *out);

owner Your object.

dst Object that will receive the message, or 0 if the inlet is “shut off.” By
convention, dst will be your object.

in The incoming message to match.

Writing the Instance Creation Function 38

out The message produced by the inlet. This will be the message that
will be matched to one of your object’s methods, or the t_symbol
received as the second argument to your object’s anything method.

inlet_4 is the most general inlet creation function. It allows the specification of
your own translations of incoming messages. Whereas you should pass a pointer to
your object for owner, you can specify another object to receive the translated
message with the dest parameter. For example, you can specify one of your object’s
outlets. The dst parameter can be changed (or set to 0) dynamically with the
inlet_to function described below, but in order to do this, you must store the Inlet
object inlet_4 returns inside your object. The gate object uses this technique to
assign its inlet to one of several outlets, or no outlet at all.

As an example, here is how intin(x,1) would be implemented using inlet_4:

inlet_4 (myObject, myObject, gensym("int"), gensym("in1"));

inlet_to

Use inlet_to to change the destination of an incoming message matched by an
inlet.

void inlet_to (Inlet *in, t_object *newdest);

in The inlet to change.

newdest An object to be the new received of the messages matched by the
inlet (and sent to the inlet’s owner, as specified by inlet_4). If
newdest is 0, the inlet is shut off and no object will receive its
messages.

Note: This routine is seldom used in the initialization function, but it’s described here
because it’s the only routine that affects inlets.

Routines for Creating Outlets
Your object is not created with any default outlets; routines must be used to create
them. As with inlets, outlets can be typed with integers, floating-point numbers, or
even specific messages. All the outlet creation functions listed below return a pointer
to the created outlet and expect a pointer to your object as their first argument.

Since you need to reference outlets explicitly, it makes sense to store a pointer to
them inside your object. The leftmost outlet can be accessed as…

myObject->m_ob.o_outlet

… assuming m_ob is a t_object that is the first field of your object.

Note that outlets do not need to be freed by your object in its free method; this is
taken care of for you.

Writing the Instance Creation Function 39

bangout

Use bangout to create an outlet that will always send the bang message.

Outlet *bangout (void *owner);

owner Your object.

You can send a bang message out a general purpose outlet, but creating an outlet
using bangout allows Max to type-check the connection a user might make and
refuse to connect the outlet to any object that cannot receive a bang message.
bangout returns the created outlet.

floatout

Use floatout to create an outlet that will always send the float message.

Outlet *floatout (void *owner);

owner Your object.

intout

Use intout to create an outlet that will always send the int message.

Outlet *intout (void *owner);

owner Your object.

Here’s an example of using intout that creates an outlet that will be used to send
integers:

mynewobject->m_intout = intout(mynewobect);

listout

Use listout to create an outlet that will always send the list message.

Outlet *listout (void *owner);

owner Your object.

outlet_new

Use outlet_new to create an outlet that can send a specific non-standard message,
or any message.

Writing the Instance Creation Function 40

Outlet *outlet_new (void *owner, char *msgType);

owner Your object.

msgType C string specifying the message that will be sent out this outlet, or 0
to indicate the outlet will be used to send various messages.

If you will be sending many data types and messages through an outlet, use the
outlet_new function and pass 0 for msgType. This creates the most basic type of
outlet. The advantage of this kind of outlet’s flexibility is balanced by the fact that
Max must perform a message-lookup in real-time for every message sent through it,
rather than when a patch is being constructed, as is true for other types of outlets.
Patchers execute faster when outlets are typed, since the message lookup can be done
before the program executes.

Here’s an example of the use of outlet_new.

void *outpointer;

outpointer = outlet_new (mynewobject,0L); /* a general outlet */

Using Proxies
Recall that the mechanism Max objects use to locate the inlet that received a message
is the translation of messages to other messages, such as int changing to in1 for the
inlet immediately to the right of the leftmost inlet when you create an inlet with
intin. This mechanism restricts the types of messages that can be received in inlets
other than the leftmost one. Indeed, the leftmost “inlet” isn’t really an inlet at all, but
rather a direct reference to your object.

There are some situations where you may want to be able to receive all messages in
your inlets, and then be able to determine the inlet where message arrived. For
example, consider a “multi-track recorder” object that wanted to use each inlet as an
independent track. Rather than having to send messages to the leftmost inlet such as
record 3 to put track 3 into record, you could send the record message directly into the
third inlet. In addition, the recorder could “record” any kind of message that might
arrive at each inlet, not just integers.

This behavior can be achieved by using Proxy objects. Proxies are “intermediary
objects” that intercept messages arriving at an inlet before your object sees them.
Then, after storing the number of the receiving inlet, the Proxy sends the message on
to you, where you can check this inlet number and take appropriate action. You
create a Proxy object with proxy_new, but unlike inlets and outlets, you must
explicitly get rid of a Proxy (using freeobject) in your object’s free function.

Note: You cannot mix regular inlets and Proxies together in the same object.

The following ia a code example in which a Proxy is used to receive messages in
three different inlets. Included is a sample bang method that prints out the inlet
number where the bang message arrived.

Here is how we declare our object, making space for all our Proxy objects plus a long
where the inlet number will be stored by the Proxy

Writing the Instance Creation Function 41

typedef struct {
struct object m_ob;
void *m_proxy[2]; /* 3 inlets requires 2 proxies */
long m_inletNumber; /* where proxy will put inlet number */

} myObject;

Here is the object creation function:

void *myObject_new (void)
{

myObject *x;

x = (myObject *)newobject(class);

/* create proxy objects from right to left */
m_proxy[1] = proxy_new(x,2,&x->m_inletNumber);
m_proxy[0] = proxy_new(x,1,&x->m_inletNumber);

return (x);
}

Now here is the method written in response to a bang message.

void myObject_bang (myObject *x;)
{

post("message arrived at inlet %ld",m_inletNumber);
}

proxy_new

Use proxy_new to create a new Proxy object.

Proxy *proxy_new (t_object *owner, long id, long *stuffLoc);

owner Your object.

id A non-zero number to be written into your object when a message
is received in this particular Proxy. Normally, id will be the inlet
“number” analogous to in1, in2 etc.

stuffLoc A pointer to a location where the id value will be written.

This routine creates a new Proxy object (that includes an inlet). It allows you to
identify messages based on an id value stored in the location specified by
stuffLoc. You should store the pointer returned by proxy_new because you’ll
need to free all Proxies in your object’s free function.

After your method has finished, Proxy sets the stuffLoc location back to 0, since it
never sees messages coming in an object’s leftmost inlet. You’ll know you received a
message in the leftmost inlet if the contents of stuffLoc is 0.

Elements of Methods 42

This section documents four important structures you’ll be using when writing your
external object’s methods. These are Outlets, Binbufs, Qelems, and Clocks. In
addition, important utility routines you’ll use to interface to Max are documented.

Routines for Using Outlets
These functions are used to send data to other objects. You don’t need to access the
fields of an Outlet data structure. All functions that send data out an outlet return 0 if
a stack overflow occurred while sending the data. If you are performing repeated
calls to an outlet function, you should stop if you see a 0 result returned. For
example:

for (i=0; i < count; i++)
if (!outlet_int(myObject, (long)i))

break;

A non-zero result indicates that an error has not occurred.

outlet_bang

Use outlet_bang to send a bang message out an outlet.

void *outlet_bang (Outlet *theOutlet);

theOutlet Outlet that will send the message.

outlet_float

Use outlet_float to send a float message out an outlet.

void *outlet_float (Outlet *theOutlet, double f);

theOutlet Outlet that will send the message.

f Float value to send.

outlet_int

Use outlet_int to send a int message out an outlet.

C H A P T E R 7

Elements of Methods

Elements of Methods 43

void *outlet_int (Outlet *theOutlet, long n);

theOutlet Outlet that will send the message.

n Integer value to send.

outlet_list

Use outlet_list to send a list message out an outlet.

void *outlet_list (Outlet *theOutlet, t_symbol *msg,
short argc, t_atom *argv);

theOutlet Outlet that will send the message.

msg Should be 0L, but can be the list Symbol.

argc Number of elements in the list in argv.

argv Atoms constituting the list.

outlet_list sends the list specified by argv and argc out the specified outlet.
The outlet must have been created with listout or outlet_new in your object
creation function (see above). You create the list as an array of Atoms, but the first
item in the list must be an integer or float.

Here’s an example of sending a list of three numbers.

t_atom myList[3];
long theNumbers[3];
short i;

theNumbers[0] = 23;
theNumbers[1] = 12;
theNumbers[2] = 5;

for (i=0; i < 3; i++) {
SETLONG(myList+i,theNumbers[i]); /* macro for setting a t_atom */

}

outlet_list(myOutlet,0L,3,&myList);

It’s not a good idea to pass large lists to outlet_list that are comprised of local
(automatic) variables. If the list is small, as in the above example, there’s no problem.
If your object will regularly send lists, it might make sense to keep an array of
t_atoms inside your object’s data structure.

outlet_anything

Use outlet_anything to send any message out an outlet.

void *outlet_anything (Outlet *theOutlet,

t_symbol *msg,

Elements of Methods 44

short argc,
t_atom *argv);

theOutlet Outlet that will send the message.

msg The message selector t_symbol.

argc Number of elements in the argument list in argv.

argv t_atoms constituting the message arguments.

This function lets you send an arbitrary message out an outlet. Here are a couple of
examples of its use.

First, here’s a hard way to send the bang message (see outlet_bang above for an
easier way):

outlet_anything(myOutlet, gensym("bang"), 0, NIL);

And here’s an even harder way to send a single integer (instead of using
outlet_int).

t_atom myNumber;

myNumber.a_type = A_LONG; /* assign a type to the Atom */
myNumber.a_w.w_long = 432; /* assign a value */

/* alternatively, you can use the macro SETLONG for the
two lines above */

outlet_anything(myOutlet, gensym("int"), 1, &myNumber);

Notice that outlet_anything expects the message argument as a t_symbol, so
you must use gensym (which transforms a C string into a t_symbol) on a character
string. If you’ll be sending the same message a lot, you might call gensym on the
message string at initialization time and store the result in a global variable to save
the (significant) overhead of calling gensym every time you want to send a message.
Also, do not send lists using outlet_anything with list as the selector argument.
Use the outlet_list function instead.

Binbufs and the Max File Format

By choosing Open As Text… from the File menu, you can open a Max binary file as a
text file. Fascinating, but what does it mean? Well, one thing you can use it for is
changing Max binary files without opening them into Patcher windows. For another,
it provides a window into the mechanism Max uses to save messages, called Binbufs
(short for binary buffer).

Binbufs are an “Atomized” counterpart of the Max text file. When you copy or
duplicate part of a patch, it’s turned into a Binbuf. The Binbuf can then be
“evaluated” because it consists of Max messages. For example, here’s a line-by-line
annotation of a simplified Max file that puts a + object and three number boxes into a

Elements of Methods 45

patcher window. (The example has been simplified by eliminating font and color
information from certain objects).

max v2; • What version of Max file this is
#N vpatcher 50 38 450 338; • Send a vpatcher message with window coords to the new object

(abbreviated #N). The resulting new Patcher window is put
on a “stack” so it can be referred to as #P symbol (internally,
the s_thing field of the #P symbol is the newly created
Patcher window object).

#P number 138 67 35 0; • Send a number message to the Patcher, with arguments:
coordinates of the number box.

#P number 98 67 35 0; • Same as above.
#P number 98 168 35 0; • Same as above.
#P newex 98 127 50 0 +; • Send a newex message (the name for a box for making normal

objects), with box coordinates. If you had typed any
arguments after + they would appear after the +.

#P connect 0 0 1 0; • connect messages tell the patcher to make connections between
the previously defined objects. The numbers are backwards
from the listed order (0 refers to the + object), so this line says,
“Connect outlet 0 of object 0 to inlet 0 of object 1.”

#P connect 3 0 0 1;
#P connect 2 0 0 0;
#P pop; • Pop the current meaning of the #P symbol off the stack and

restore the previous binding (in this case, nothing).

When this file is read in, it is turned into a Binbuf consisting of Atoms: symbols,
numbers, semicolons, etc. This can then be evaluated as a message, where the first
Symbol is the receiver, the second the message, and the additional Atoms are
arguments to the message. A semicolon is used to separate messages.

Why would you want to know about Binbufs? One reason is to use them to evaluate
text. Once a bunch of text has been transformed into a Binbuf, it can be “evaluated”
as a Max message. For example, the pop-up umenu object turns its text into a Binbuf,
which can be evaluated as a message to be sent out its right outlet. The Binbuf can
take care of separating a text stream into Atoms for you, generating Symbols and
separating numbers from text as it goes. You’ll also need to know about Binbufs if
you want to do anything special to save the state of your object in a Max file. This is

Elements of Methods 46

especially true if you’re writing a user interface object (normal objects have their box
coordinates and typed-in arguments saved for them).

Binbuf Routines
You won’t need to know about the internal structure of a Binbuf, so you can use the
void * type to refer to one.

When writing an object with a save method or a user interface object, you will often
use binbuf_vinsert to store your object’s creation information. Additional details
are furnished in Chapter 11.

binbuf_new

Use binbuf_new to create and initialize a Binbuf.

Binbuf *binbuf_new (void);

binbuf_new returns the created Binbuf if successful, 0 if not. If you’ve created a
Binbuf, you’ll need to use freeobject to get rid of it.

binbuf_append

Use binbuf_append to append t_atoms to a Binbuf without modifying them.

void binbuf_append (Binbuf *bin, t_symbol *msg,
short argc, t_atom *argv);

bin Binbuf to receive the items.

msg Ignored. Pass 0.

argc Count of items in the argv array.

argv Array of atoms to add to the Binbuf.

binbuf_insert

Use binbuf_insert to append a Max message to a Binbuf adding a semicolon.

void binbuf_insert (Binbuf *bin, t_symbol *msg,
short argc, t_atom *argv);

bin Binbuf to receive the items.

msg Ignored. Pass 0.

argc Count of items in the argv array.

argv Array of t_atoms to add to the Binbuf.

You’ll use binbuf_insert instead of binbuf_append if you were saving your

Elements of Methods 47

object into a Binbuf and wanted a semicolon at the end. If the message is part of a file
that will later be evaluated, such as a Patcher file, the first argument argv[0] will be
the receiver of the message and must be a Symbol. binbuf_vinsert (see below) is
easier to use than binbuf_insert, since you don’t have to format your data into an
array of Atoms first.

binbuf_insert will also convert the t_symbols #1 through #9 into $1 through $9.
This is used for saving patcher files that take arguments; you will probably never
save these symbols as part of anything you are doing.

binbuf_vinsert

Use binbuf_vinsert to append a Max message to a Binbuf adding a semicolon.

void binbuf_vinsert (Binbuf *bin, char *fmtString,
void *items, ...);

bin Binbuf containing the desired Atom.

fmtString C string containing one or more letters corresponding to the types
of each element of the message. s for Symbol, l for long, or f for
float.

items Elements of the message, passed directly to the function as Symbols,
longs, or floats.

binbuf_vinsert works somewhat like a printf for Binbufs. It allows you to pass
a number of arguments of different types and insert them into a Binbuf. The entire
message will then be terminated with a semicolon. Only 16 items can be passed to
binbuf_vinsert.

The example below shows the implementation of a normal object’s save method. The
save method requires that you build a message that begins with #N (the new object) ,
followed by the name of your object (in this case, represented by the symbol myobject),
followed by any arguments your instance creation function requires. In this example,
we save the values of two fields m_val1 and m_val2 defined as longs.

void myobject_save (myObject *x, Binbuf *dstBuf)
{

binbuf_vinsert(dstBuf, "ssll", gensym("#N"), gensym("myobject"),
x->m_val1, x->m_val2);

}

Suppose that such an object had written this data into a file. If you opened the file as
text, you would see the following:

#N myobject 10 20;
#P newobj 218 82 30 myobject;

The first line will result in a new myobject object to be created; the creation function
receives the arguments 10 and 20. The second line contains the text of the object box.
The newobj message to a patcher creates the object box user interface object and

Elements of Methods 48

attaches it to the previously created myobject object. Normally, the newex message is
used. This causes the object to be created using the arguments that were typed into
the object box.

binbuf_eval

Use binbuf_eval to evaluate a Max message in a Binbuf, passing it arguments.

short *binbuf_eval (Binbuf *bin, short argc, t_atom *argv,
void *receiver);

bin Binbuf containing the message.

argc Count of items in the argv array.

argv Array of t_atoms as the arguments to the message.

receiver Receiver of the message.

binbuf_eval is an advanced function that evaluates the message in a Binbuf with
arguments in argv, and sends it to receiver. Returns the result of sending the
message.

binbuf_getatom

Use binbuf_getatom to retrieve a single Atom from a Binbuf.

short binbuf_getatom (Binbuf *bin, long *typeOffset,
long *stuffOffset, t_atom *result);

bin Binbuf containing the desired t_atom.

typeOffset Offset into the Binbuf’s array of types. Modified to point to the next
t_atom.

stuffOffset Offset into the Binbuf’s array of data. Modified to point to the next
t_atom.

result Location of a t_atom where the retrieved data will be placed.

To get the first t_atom, set both typeOffset and stuffOffset to 0.
binbuf_getatom returns 1 if there were no t_atoms at the specified offsets, 0 if
there’s a legitimate t_atom returned in result. Here’s an example of getting all the
items in a Binbuf:

t_atom holder;
long to, so;

to = 0;
so = 0;
while (!binbuf_getatom(x, &to, &so, &holder));

/* do something with the t_atom */

Elements of Methods 49

binbuf_set

Use binbuf_set to change the entire contents of a Binbuf.

void binbuf_set (Binbuf *bin, t_symbol *msg,
short argc, t_atom *argv);

bin Binbuf to receive the items.

msg Ignored. Pass 0.

argc Count of items in the argv array.

argv Array of t_atoms to put in the Binbuf.

The previous contents of the Binbuf are destroyed.

binbuf_text

Use binbuf_text to convert a text handle to a Binbuf.

short binbuf_text (Binbuf *bin, char **srcText, long length);

bin Binbuf to contain the converted text. It must have already been
created with binbuf_new. Its previous contents are destroyed.

srcText Handle to the text to be converted. It need not be terminated with a
0.

length Number of characters in the text.

binbuf_text parses the text in the handle srcText and converts it into binary
format. Use it to evaluate a text file or text line entry into a Binbuf. If binbuf_text
encounters an error during its operation, a non-zero result is returned, otherwise it
returns 0.

Note: Commas, symbols containing a dollar sign followed by a number 1-9, and
semicolons are identified by special pseudo-type constants for you when your text is
binbuf-ized.

The following constants in the a_type field of Atoms returned by
binbuf_getAtom identify the special symbols A_SEMI (10), A_COMMA (11), and
A_DOLLAR (12).

For a t_atom of the pseudo-type A_DOLLAR, the a_w.w_long field of the t_atom
contains the number after the dollar sign in the original text or symbol.

Using these pseudo-types may be helpful in separating “sentences” and “phrases” in
the input language you design. For example, the pop-up umenu object allows users
to have spaces in between words by requiring the menu items be separated by
commas. It’s reasonably easy, using binbuf_getatom, to find the commas in a
Binbuf in order to determine the beginning of a new item when reading the atomized
text to be displayed in the menu.

Elements of Methods 50

If you want to use a literal comma or semicolon in a symbol, precede it with a
backslash (\) character. The backslash character can be included by using two
backslashes in a row.

binbuf_totext

Use binbuf_totext to convert a Binbuf into a text handle.

short binbuf_totext (Binbuf *bin, char **dstText, long *size);

bin Binbuf with data to convert to text.

dstText Pre-existing handle where the text will be placed. dstText will be
resized to accomodate the text.

size Where binbuf_totext returns the number of characters in the
converted text handle.

binbuf_totext converts a Binbuf into text and places it in a handle. Backslashes are
added to protect literal commas and semicolons contained in symbols. The pseudo-
types are converted into commas, semicolons, or dollar-sign and number, without
backslashes preceding them. binbuf_text can read the output of binbuf_totext
and make the same Binbuf. If binbuf_totext runs out of memory during its
operation, it returns a non-zero result, otherwise it returns 0.

binbuf_read

Use binbuf_read to read a Max format binary or text file into a Binbuf.

short binbuf_read (Binbuf *bin, char *filename, short volume,
short binaryFlag);

bin Binbuf into which the file will be read. It must have already been
created with binbuf_new. Its previous contents are destroyed.

filename C string containing the name of the file to read. Partial pathnames
are acceptable.

vol Volume or working directory reference number of the file.

binaryFlag If non-zero, indicates the file is a binary format Max document (type
maxb). If 0, indicates the file is a TEXT file. An error is returned if
you try to read an old format (type 1) Max binary file.

binbuf_read opens and reads a file into a Binbuf. It returns a non-zero result if an
error occurred, or 0 if there was no error during its operation.

binbuf_write

Use binbuf_write to write a Binbuf to a Max format binary or text file.

Elements of Methods 51

short binbuf_write (Binbuf *bin, char *filename, short volume,
short binaryFlag);

bin Binbuf to write to disk.

filename C string containing the name of the file to write. Partial pathnames
are acceptable. If the file already exists, it will be overwriten.

vol Volume or working directory reference number of the file.

binaryFlag 1 specifies that an old format Max binary file should be written. 2
specifies a new format Max binary file. 0 specifies a TEXT format
file. An error is returned on the PowerPC if you try to write an old
format (type 1) binary file.

binbuf_write creates a file (if necessary) and writes a Binbuf into it.
binbuf_write returns a non-zero result if an error occurred, or 0 if there was no
error during its operation.

readatom

Use readatom to read a single Atom from a text buffer.

short readatom (char *outstr, char **text, long *index,
long size, t_atom *result);

outstr C string of 256 characters that will receive the next text item read
from the buffer.

text Handle to the text buffer to be read.

index Starts at 0, and is modified by readatom to point to the next item in
the text buffer.

size Number of characters in text.

result Where the resulting Atom read from the text buffer is placed.

This function provides access to the low-level Max text evaluator used by
binbuf_text. It is designed to operate on a handle of characters (text) and called
in a loop, as in the example shown below. readatom returns non-zero if there is
more text to read, and zero if it has reached the end of the text. Note that this return
value has the opposite logic from that of binbuf_getatom.

long index;
t_atom dst;
char outstr[256];

index = 0;
while (readatom(outstr,textHandle,&index,textLength,&dst)) {

/* do something with the resulting Atom */
}

Elements of Methods 52

An alternative to using readatom is to turn your text into a Binbuf using
binbuf_text, then call binbuf_getatom in a loop.

Routines for Atombufs
The Atombuf is an alternative to the Binbuf for temporary storage of atoms. Its
principal advantage is that the internal structure is publicly available so you can
manipulate the atoms in place. The standard Max text objects (message box, object
box, comment) use the Atombuf structure to store their text (each word of text is
stored as a Symbol or a number).

The data structure of an Atombuf is as follows:

typedef struct atombuf {
long a_argc;
t_atom a_argv[1];

} t_atombuf, Atombuf;

The array a_argv is of variable length specified by a_argc. The size of an Atombuf
x is thus sizeof(long) + x->a_argc * sizeof(t_atom).

atombuf_new

Use atombuf_new to create a new Atombuf from an array of t_atoms.

t_atombuf *atombuf_new (long argc, t_atom *argv);

argc Number of t_atoms in the argv array. May be 0.

argv Array of t_atoms. If creating an empty Atombuf, you may pass 0.

atombuf_new create a new Atombuf and returns a pointer to it. If 0 is returned,
insufficient memory was available.

atombuf_free

Use atombuf_free to dispose of the memory used by an Atombuf.

void atombuf_free (t_atombuf *ab);

ab Atombuf to free.

You cannot use freeobject on an Atombuf, since it contains no object header
information.

atombuf_text

Use atombuf_text to convert text to t_atoms in an Atombuf.

Elements of Methods 53

void atombuf_text (t_atombuf **ab, char **buffer, long size);

ab Pointer to existing atombuf variable. The variable will be replaced
by a new Atombuf containing the converted text.

buffer Handle to the text to be converted. It need not be zero-terminated.

size Number of characters in the text.

To use this routine to create a new Atombuf from the text buffer, first create a new
empty t_atombuf with a call to atombuf_new(0L,0L).

Clock Routines
Clock objects are your interface to Max’s scheduler. To use the scheduler, you create a
new Clock object using clock_new in your instance creation function. You also have
to write a clock function that will be executed when the clock goes off, declared as
follows:

void myobject_tick (myobject *x);

The argument x is determined by the arg argument to clock_new. Almost always
it will be pointer to your object.

Then, in one of your methods, use clock_delay or clock_fdelay to schedule
yourself. If you want unschedule yourself, call clock_unset. To find out what time
it is now, use gettime or clock_getftime. More advanced clock operations are
possible with the setclock object interface described in Chapter 9. We suggest you
take advantage of the higher timing precision of the floating-point clock routines—all
standard Max 4 timing objects such as metro use them.

When the user has Overdrive mode enabled, your clock function will execute at
interrupt level.

clock_new

Use clock_new to create a new Clock object.

Clock *clock_new (void *arg, method clockfun);

arg Argument that will be passed to clock function clockfun when it
is called. This will almost always be a pointer to your object.

clockfun Function to be called when the clock goes off, declared to take a
single argument as shown above.

clock_new returns a pointer to a newly created Clock object that will run function
clockfun passing it argument arg when it goes off. Normally, clock_new is called
in your instance creation function—and it cannot be called at interrupt level. To get
rid of a clock object you created, use freeobject.

Elements of Methods 54

clock_delay

Use clock_delay to schedule the execution of a Clock.

void clock_delay (Clock *cl, long interval);

cl Clock to schedule.

interval Delay, in milliseconds, before the Clock will execute.

clock_delay sets a clock to go off at a certain number of milliseconds from the
current logical time.

clock_fdelay

Use clock_fdelay to schedule the execution of a Clock using a floating-point
argument.

void clock_fdelay(Clock *c, double time);

c Clock to schedule.

time Delay, in milliseconds, before the Clock will execute.

clock_fdelay is the floating-point equivalent of clock_delay.

clock_unset

Use clock_unset to cancel the scheduled execution of a Clock.

void clock_unset (Clock *cl);

cl Clock to cancelled.

clock_unset will do nothing (and not complain) if the Clock passed to it has not
been set.

gettime

Use gettime to find out the current logical time of the scheduler in milliseconds.

long gettime (void);

clock_getftime

Use clock_getftime to find out the current logical time of the scheduler into a
floating point argument.

Elements of Methods 55

void clock_getftime(double *time)

time Returns the current time.

clock_getftime is the floating-point equivalent of gettime.

Using Clocks

Under normal circumstances, gettime or clock_getftime will not be necessary
for scheduling purposes if you use clock_delay or clock_fdelay, but it may
be useful for recording the timing of messages or events .

As an example, here’s a fragment of how one might go about writing a metronome
using the Max scheduler. First, here’s the data structure we’ll use.

typedef struct mymetro {
void *m_clock;
double m_interval;
void *m_outlet;

} t_mymetro;

We’ll assume that the class has been initialized already. Here’s the instance creation
function that will allocate a new Clock.

void *mymetro_create (double defaultInterval)
{

t_mymetro *x;

x = (t_mymetro *)newobject(mymetro_class); /* allocate space */
x->m_clock = clock_new(x, mymetro_tick);/* make a clock obj */

x->m_interval = defaultInterval; /* store the interval */
x->m_outlet = bangout(x); /* outlet for ticks */
return x; /* return the new object */

}

Here’s the method written to respond to the bang message that starts the metronome.

void mymetro_bang (t_mymetro *x)
{

clock_fdelay(x->m_clock,0.);
}

Here’s the Clock function.

void mymetro_tick(t_mymetro *x)
{

clock_fdelay(x->m_clock, x->m_interval);
/* schedule another metronome tick */

outlet_bang(x->m_outlet); /* send out a bang */
}

Elements of Methods 56

You may also want to stop the metronome at some point. Here’s a method written to
respond to the message stop. It uses clock_unset.

void mymetro_stop (t_mymetro *x)
{

clock_unset(x->m_clock);
}

In your object’s free function, you should call freeobject on any Clocks you’ve
created.

void mymetro_free (MyMetro *x)
{

freeobject((t_object *)x->m_clock);
}

Qelem Routines
Your object’s methods may be called at interrupt level. This happens when the user
has Overdrive mode enabled and one of your methods is called, directly or
indirectly, from a scheduler Clock function. This means that you cannot count on
doing certain things—like drawing, asking the user what file they would like
opened, or calling any Macintosh toolbox trap that allocates or purges
memory—from within any method that responds to any message that could be sent
directly from another Max object. The mechanism you’ll use to get around this
limitation is the Qelem (queue element) structure. Qelems also allow processor-
intensive tasks to be done at a lower priority than in an interrupt. As an example,
drawing on the screen, especially in color, takes a long time in comparison with a
task like sending MIDI data.

A Qelem works very much like a Clock. You create a new Qelem in your creation
function with qelem_new and store a pointer to it in your object. Then you write a
queue function, very much like the clock function (it takes the same single argument
that will usually be a pointer to your object) that will be called when the Qelem has
been set. You set the Qelem to run its function by calling qelem_set.

Often you’ll want to use Qelems and Clocks together. For example, suppose you
want to update the display for a counter that changes 20 times a second. This can be
accomplished by writing a Clock function that calls qelem_set and then
reschedules itself for 50 milliseconds later using the technique shown in the
metronome example above. This scheme works even if you call qelem_set faster
than the computer can draw the counter, because if a Qelem is already set,
qelem_set will not set it again. However, when drawing the counter, you’ll display
its current value, not a specific value generated in the Clock function.

Note that the Qelem-based defer mechanism discussed later in this chapter may be
easier for lowering the priority of one-time events, such as opening a standard file
dialog box in response to a read message.

If your Qelem routine sends messages using outlet_int or any other of the outlet
functions, it needs to use the lockout mechanism described in the Interrupt Level
Considerations section below.

Elements of Methods 57

qelem_new

Use qelem_new to create a new Qelem.

Qelem *qelem_new (void *arg, method fun);

arg Argument to be passed to function fun when the Qelem executes.
Normally a pointer to your object.

fun Function to execute.

Any kind of drawing or calling of Macintosh Toolbox routines that allocate or purge
memory should be done in a Qelem function. You need to store the return value of
qelem_new to pass to qelem_set.

Note that in order to get rid of a Qelem, do not call freeobject; use qelem_free
instead.

qelem_set

Use qelem_set to cause a Qelem to execute.

void qelem_set (Qelem *qe);

qe The Qelem whose function will be exeucted at the main level.

The key behavior of qelem_set is this: if the Qelem object has already been set, it
will not be set again. (If this is not what you want, see defer below.) This is useful if
you want to redraw the state of some data when it changes, but not in response to
changes that occur faster than can be drawn. A Qelem object is unset after its queue
function has been called.

qelem_unset

Use qelem_unset to cancel a Qelem’s execution.

void qelem_unset (Qelem *qe);

qe The Qelem whose execution you wish to cancel.

If the Qelem’s function is set to be called, qelem_unset will stop it from being
called. Otherwise, qelem_unset does nothing.

qelem_front

Use qelem_front to cause a Qelem to execute at a high priority.

void qelem_front (Qelem *qe);

Elements of Methods 58

qe The Qelem whose function will be exeucted at the main level.

This function is identical to qelem_set, except that the Qelem’s function is placed at
the front of the list of routines to execute at the main event level instead of the back.
Be polite and only use qelem_front for special time-critical applications.

qelem_free

Use qelem_free to get rid of a Qelem in your object’s free funtion.

void qelem_free (Qelem *qe);

qe The Qelem to destroy.

This function frees a previously allocated Qelem object. Use this function instead of
freeobject to free the memory used by a Qelem.

Interrupt Level Considerations
Your object may be responding to messages at interrupt level, and there are a few
guidelines you’ll need to follow when writing methods so that your objects work
correctly. Interrupt Level processing is enabled when the user chooses Overdrive
from the Options menu. The advantages of Interrupt Level processing are the
increased accuracy of timing, the ability for a Max patch to continue to operate
smoothly while the user is using the menu bar or dragging a window, and the ability
to prioritize more time-critical clock and serial port operations over slower screen
drawing.

The basic rules for interrupt level operations are the following:

• Use the lockout mechanism, with the function lockout_set described below,
when sending messages or calling outlet functions when not at Interrupt Level.
Normally, this is only needed when writing a click method (needed in User
Interface objects and objects that put up their own windows). If you use an outlet
to send a message in a Qelem, you’ll need to use lockout_set there as well.

• Don’t call Macintosh memory allocation routines directly in response to a typed
message (such as int or list). Nor should you use Macintosh traps that move or
purge memory (see Apple developer documentation for a list). For memory
management, you may be able to use the special interrupt-safe Max routines
getbytes and freebytes, and defer other types of memory allocation. Don’t do
anything that creates, adds to or frees a Binbuf or an Expr—these structures use
Macintosh memory management calls. Note that getbytes has only a limited
supply of memory available at interrupt level, so don’t overuse it. In addition,
getbytes can only allocate a buffer of less than 16384 bytes at interrupt level. If
you need larger buffers, allocate them in advance.

• Use the Macintosh memory allocation calls supplied by Max called newhandle
and disposhandle instead of the Macintosh traps NewHandle and

Elements of Methods 59

DisposeHandle. The Max versions return an error and refuse to cooperate if a
Memory Manager call was about to be made at interrupt level.

• Don’t draw on the screen or put up a dialog box directly in response to a message.
Use a Qelem or defer. However, you can call ouchstring (for putting up error
dialog box notices) in an interrupt, and the dialog will be queued to a lower
priority for you.

Interrupt Level Routines

Here are a few routines for dealing with Interrupt-driven processing issues.

lockout_set

Use lockout_set from the main event level to prevent interrupt-level processing
during critical regions of non-interrupt code.

short lockout_set (short lockState);

lockState The desired state of the lockout flag: if non-zero, your routine will
be prevented from being interrupted. If zero, interruptions are
allowed.

One common use of lockout_set is around calls to Outlet routines in response to
click messages or inside Qelem functions. It returns the previous state of the lockout
flag so you can restore it later with another call to lockout_set. Here’s an example
of a typical use.

short prevLock;

prevLock = lockout_set(1);
/* your critical region code here */
lockout_set(prevLock);

As in the example, always restore the lockout state to its previous state by calling
lockout_set again. If you don’t, nothing will run at interrupt level in Overdrive
until the user turns Overdrive off and on again.

isr

Use isr to determine whether your code is executing in the Max timer interrupt

short isr (void);

This function returns non-zero if you are within a Max timer interrupt, zero
otherwise. Note that if your code sets up other types of interrupt-level callbacks, such
as for other types of device drivers used in asynchronous mode, isr will return
false.

Elements of Methods 60

defer

Use defer to defer execution of a function to the main level if (and only if) your
function is executing at interrupt level.

void defer (t_object *client, method fun, t_symbol *s,
short argc, t_atom *argv);

client First argument passed to the function fun when it executes.

fun Function to be called, see below for how it should be declared.

s Second argument passed to the function fun when it executes.

argc Count of arguments in argv. argc is also the third argument
passed to the function fun when it executes.

argv Array containing a variable number of function arguments. If this
argument is non-zero, defer allocates memory to make a copy of
the arguments (according to the size passed in argc) and passes the
copied array to the function fun when it executes as the fourth
argument.

This function uses the isr routine to determine whether you’re at the Max timer
interrupt level. If so, defer creates a Qelem, calls qelem_front, and its queue
function calls the function fun you passed with the specified arguments. If you’re
not at the Max timer interrupt level, the function is executed immediately with the
arguments. Note that this implies that defer is not appropriate for using in situations
such as Device or File manager I/0 completion routines. defer_low described
below is appropriate however, because it always defers.

The deferred function should be declared as follows:

void myobject_do (myObject *client, t_symbol *s, short argc,
t_atom *argv);

defer_low

Use defer_low to defer execution of a function to the main level.

void defer_low (t_object *client, method fun, t_symbol *s,
short argc, t_atom *argv);

client First argument passed to the function fun when it executes.

fun Function to be called, see below for how it should be declared.

s Second argument passed to the function fun when it executes.

argc Count of arguments in argv. argc is also the third argument
passed to the function fun when it executes.

argv Array containing a variable number of function arguments. If this
argument is non-zero, defer allocates memory to make a copy of

Elements of Methods 61

the arguments (according to the size passed in argc) and passes the
copied array to the function fun when it executes as the fourth
argument.

defer_low always defers a call to the function fun whether you are at interrupt level
or not, and uses qelem_set, not qelem_front. This function is recommended for
responding to messages that will cause your object to open a dialog box, such as read
and write.

schedule

Use schedule to cause a function to be executed at the timer level at some time in
the future.

void schedule (t_object *client, method fun, long time,
t_symbol *sel, short argc, t_atom *argv);

client First argument to the function fun to be executed. By convention,
this is a pointer to your object.

fun Function to be executed. See below for how to declare it. This
function may be called at interrupt level.

time The logical time that the function fun will be executed.

sel Second argument to the function fun.

argc Count of Atoms in argv; third argument to the function fun.

argv Additional arguments to the function fun, or 0L if there are none.

schedule calls a function at some time in the future. Unlike defer, the function is
called in the scheduling loop when logical time is equal to the specified value when.
This means that the function could be called at interrupt level, so it should follow the
usual restrictions on interrupt-level conduct. The function fun passed to schedule
should be declared as follows:

void myobject_do (myObject *client, t_symbol *s, short argc,
t_atom *argv);

One use of schedule is as an alternative to using the lockout flag. Here is an
example click method that calls schedule instead of outlet_int surrounded by
lockout_set calls.

schedule_delay

Use schedule_delay to cause a function to be executed at the timer level at some
time in the future specified by a delay offset.

void schedule (t_object *client, method fun, long delay,
t_symbol *sel, short argc, t_atom *argv);

Elements of Methods 62

client First argument to the function fun to be executed. By convention,
this is a pointer to your object.

fun Function to be executed. See below for how to declare it. This
function may be called at interrupt level.

delay The delay from the current time before the function will be
executed.

sel Second argument to the function fun.

argc Count of Atoms in argv; third argument to the function fun.

argv Additional arguments to the function fun, or 0L if there are none.

schedule_delay is similar to schedule but allows you to specify the time as a delay
rather than a specific logical time.

One use of schedule or schedule_delay is as an alternative to using the
lockout flag. Here is an example click method that calls schedule instead of
outlet_int surrounded by lockout_set calls.

void myobject_click (t_myobject *x, Point pt, short modifiers)
{

t_atom a[1];

a[0].a_type = A_LONG;
a[0].a_w.w_long = Random();
schedule_delay(x, myobject_sched, 0 ,0, 1, a);

}

void myobject_sched (t_myobject *x, t_symbol *s, short ac, t_atom *av)
{

outlet_int(x->m_out,av->a_w.w_long);
}

Essential Max Utilities 63

Here are some important functions for interacting with the Max environment.

General Utilities

freeobject

Use freeobject to release the memory used by a Max object.

void freeobject (t_object *obj);

obj Object to free.

freeobject calls an object’s free function, if any, then disposes the memory used
by the object itself. freeobject should be used on any instance of a standard Max
object data structure, with the exception of Boxes, Qelems and Atombufs. Clocks, Binbufs,
Proxies, Toolfiles, Exprs, Eds, etc. should be freed with freeobject.

gensym

Use gensym to convert a character string into a t_symbol.

t_symbol *gensym (char *string)

string C string to be looked up in Max’s symbol table. If the string is not
present, a new Symbol is created.

gensym takes a C string and returns a pointer to the t_symbol associated with the
string. Max maintains a symbol table of all strings to speed lookup for message
passing. If you want to access the bang symbol for example, you’ll have to use the
expression gensym("bang"). You may need to use gensym in writing a User
Interface object’s psave method to save extra data besides the object’s box location and
arguments. Or gensym may be needed when sending messages directly to other Max
objects such as with typedmess and outlet_anything. These functions expect
t_symbols—they don’t gensym character strings for you.

The t_symbol data structure contains a place to store an arbitrary value. The
following example shows how you can use this feature to use symbols to share
values among two different external object classes. (Objects of the same class can use

C H A P T E R 8

Essential Max Utilities

Essential Max Utilities 64

the code resource’s global variable space to share data.) The idea is that the s_thing
field of a t_symbol can be set to some value, and gensym will return a reference to
the Symbol. Thus, the two classes just have to agree about the character string to be
used. Alternatively, each could be passed a t_symbol that will be used to share
data.

Storing a value:

t_symbol *s;

s = gensym("some_weird_string");
s->s_thing = (t_object *)someValue;

Retrieving a value:

t_symbol *s;

s = gensym("some_weird_string");
someValue = s->s_thing;

post

Use post to print text in the Max window.

void post (char *fmtstring, void *items...);

fmtstring A C string containing text and printf-like codes specifying the sizes
and formatting of the additional arguments.

items Arguments of any type that correspond to the format codes in
fmtString.

post is a printf for the Max window. It even works at interrupt level, queuing up to
four lines of text to be printed when main event level processing resumes. post can
be quite useful in debugging your external object.

Note that post only passes 16 bytes of arguments to sprintf, so if you want
additional formatted items on a single line, use postatom.

Example:

short whatIsIt;

whatIsIt = 999;
post ("the variable is %ld",(long)whatIsIt);

The Max Window output when this code is executed.

the variable is 999

error

Use error to print an error message in the Max window.

Essential Max Utilities 65

void error (char *fmtstring, void *items...);

fmtstring A C string containing text and printf-like codes specifying the sizes
and formatting of the additional arguments.

items Arguments of any type that correspond to the format codes in
fmtString.

The error function writes a line of text printf-style into the Max window like post,
preceded by the attention-getting string * error. Note that by using this routine to
post errors, you let users trap the messages using the error object.

Example:

error ("bad arguments to %s",myclassname);

Max Window output:

• error: bad arguments to myclass

postatom

Use postatom to print multiple items in the same line of text in the Max window.

void postatom (t_atom *item);

item Atom to be printed. The proper formatting is performed depending
on the Atom’s a_type field.

This function prints a single Atom on a line in the Max window without a carriage
return afterwards, as post does. Each Atom printed is followed by a space character.
The Max print object uses postatom to print lists.

ouchstring

Use ouchstring to put up an error or advisory alert box on the screen.

void ouchstring (char *fmtstring, void *items...);

fmtstring A C string containing text and printf-like codes specifying the sizes
and formatting of the additional arguments.

items Arguments of any type that correspond to the format codes in
fmtString.

This function performs an sprintf on fmtstring and items, then puts up an alert
box. ouchstring will queue the message to a lower priority level if it’s called in an
interrupt and there is no alert box request already pending.

Essential Max Utilities 66

An example of the use of ouchstring you might have seen in Max at one time or
another:

The Max user-interface style suggests that error dialogs be used as seldom as
possible in favor of error messages in the Max window.

sprintf

Use sprintf to format text strings.

short sprintf (char *dest, char *fmtString, void *items...);

dest C string where the resulting formatted text will be placed.

fmtstring C string containing text and printf-like codes specifying the sizes
and formatting of the additional arguments.

items Arguments of any type that correspond to the format codes in
fmtString.

This provides access to the commonly used C library function sprintf used in the
Max kernel so you can avoid linking it into your external code resource.

sscanf

Use sscanf to convert text to binary data.

short sscanf (char *src, char *fmtString, void *items...);

src C string where the text is read from.

fmtString C string containing text and printf-like codes specifying the sizes of
the additional arguments.

items One or more addresses of data where you want the converted
binary values to be placed.

This provides access to the C library function sscanf used in the Max kernel so you
can avoid linking it into your external code resource.

Essential Max Utilities 67

maxversion

Use maxversion to determine information about the current Max environment.

short maxversion (void);

This function returns the version number of Max. In Max versions 2.1.4 and later, this
number is the version number of the Max kernel application in binary-coded
decimal. Thus, 2.1.4 would return 214 hex or 532 decimal. Version 3.0 returns 300
hex. Use this to check for the existence of particular function macros that are only
present in more recent Max versions. Versions before 2.1.4 returned 1, except for
versions 2.1.1 - 2.1.3 which returned 2. Bit 14 (counting from left) will be set if Max is
running as a standalone application, so you should mask the lower 12 bits to get the
version number.

assist_string

Use assist_string to provide information about an inlet or outlet of your object
to the user.

void assist_string (short rsrcID, long message, long arg,

short firstin, short firstout,
char *dstString, ...);

rsrcID ID of a ‘STR#’ resource containing assistance information. This
resource must have been copied to Max’s temporary resource file
with rescopy.

message Either ASSIST_INLET or ASSIST_OUTLET specifying whether the
assistance is for an inlet or an outlet. This value is passed to your
assist method as an argument.

arg Inlet or outlet number to describe, beginning at 0. This value is
passed to your assist method as an argument.

firstin Index (1-relative) of the first string in the ‘STR#’ resource that
describes an inlet. This is almost always 1.

firstout Index of the first string in the ‘STR#’ resource that describes an
outlet.

dstString Location where the string extracted from the resource should be
copied. This pointer is passed to your assist method as an
argument, although you may wish to call assist string on a
temporary character array and then perform additional processing
on it. The result is stored as a C string.

... You can pass up to 16 bytes worth of additional arguments to
assist_string and they will be passed to sprintf, which uses the
string copied from the resource as a format string.

This routine is useful in implementing your assist method. Here’s an example.

Essential Max Utilities 68

Suppose we’ve stored the following two strings for our object in a STR# resource ID
= 4534. The stored strings are:

Sets the Value of the Bludgeon (Currently %ld)
Outputs a bludgeon Message

We can document this object in our assist method as follows:

void myobject_assist(MyObject *x, void *b, long msg, long arg,
char *s)

{
assist_string(4534,msg,arg,1,2,s,x->m_bludgeon);

}

drawstr

Use drawstr to draw a C string.

void drawstr (char *str);

str C string to draw at the current pen location using the current font
and size.

quittask_install

Use quittask_install to register a function that will be called with Max exits.

void quittask_install(method m, void *a);

m A function that will be called on Max exit.

a Argument to be used with method m.

quittask_install provides a mechanism for your external to register a routine to
be called prior to Max shutdown. This is useful for objects that need to provide disk-
based persistance outside the standard Max storage mechanisms, or need to shut
down hardware or their connection to system software and cannot do so in the
termination routine of a code fragment.

quittask_remove

Use quittask_remove to unregister a function previously registered with
quittask_install.

void quittask_remove(method m);

m Function to be removed as a shutdown method.

This routineallows an object to remove any previously registered shutdown
methods.

Essential Max Utilities 69

object_subpatcher

Use object_subpatcher to determine if an object contains any subpatchers.

void *object_subpatcher(t_object *theobject, long *index,
void *arg);

theobject An object to query.

index The index of the returned subpatcher. Set this to 0 on the initial call.

arg An argument to be passed to the patcher routine. This is primarily
for internal Max use.

object_subpatcher lists any Patchers that are “contained” by an object. For
instance, the patcher and bpatcher objects contain Patchers, as does the MSP object
poly~..

The index argument is set during the call to object_subpatcher. If a non-zero result is
returned (meaning that a subpatcher was found), the index argument will be set to
the index number of the returned pointer to a Patcher. To find all the Patchers
associated with an object, call object_subpatcher until it returns 0.

Memory Management Routines
Here are some functions provided for memory allocation that work within the real-
time Max environment. Max maintains a small amount of memory that can be
allocated at interrupt level, because you can’t use standard Macintosh calls to allocate
memory at interrupt level because the Memory Manager is not re-entrant. If the
amount of memory allocated at interrupt level is reduced by more than 50%, the
supply is replenished when Max returns to the main event level.

The newhandle and disposhandle routines can be used in place of the Macintosh
traps NewHandle and DisposeHandle. They work with the Max scheme for
preventing out of memory errors by failing if the memory allocated would dip into
an emergency reserve left for operating system use. They also fail if called at
interrupt level.

newhandle

Use newhandle to allocate relocatable memory.

char **newhandle (long size);

size The size to allocate in bytes.

This function is a substitute for NewHandle that performs some error checking and
won’t call NewHandle if is called at interrupt level.

Essential Max Utilities 70

disposhandle

Use disposhandle to free the memory used by a handle you no longer need.

void disposhandle (char **handle);

handle Macintosh Handle to be disposed.

This function calls the Macintosh trap DisposeHandle unless it is called at interrupt
level in which it returns a NIL value.

growhandle

Use growhandle to change the size of a handle.

void growhandle (char **handle, long size);

handle Macintosh Handle whose size is to be changed.

size The new size in bytes.

This function is a substitute for SetHandleSize with some error checking that refuses
to work at interrupt level.

getbytes

Use getbytes to allocate small amounts of non-relocatable memory.

void *getbytes (short size);

size The size to allocate in bytes.

getbytes is a substitute for NewPtr that takes the memory from a pool maintained
by Max. It can be called for a request up to 32767 bytes. If size is greater than 16384
bytes, getbytes calls the Macintosh routine NewPtr. If this size request is made at
interrupt level, getbytes returns 0 and prints the following message in the Max
window.

• check failed: t_newptr in overdrive

The memory pool used by getbytes is limited to 256K for any particular interrupt
in version 4, 128K in version 3 and 32K in previous versions. The same “t_newptr in
overdrive” may appear when you try to allocate too many small chunks of memory
at interrupt level, since getbytes uses NewPtr to replenish its non-relocatable
memory pool. Always free memory allocated with getbytes with freebytes, and
note that freebytes requires that you pass it the size of the block allocated with
getbytes.

Essential Max Utilities 71

freebytes

Use freebytes to free memory allocated with getbytes.

void freebytes (void *ptr, short size);

ptr A pointer to the block of memory previously allocated that you
want to free.

size The size of this block in bytes.

Like getbytes, freebytes may be called at interrupt level for blocks up to 16384
bytes.

getbytes16

Use getbytes16 to allocate small amounts of non-relocatable memory that is
aligned on a 16-byte boundary for use with vector optimization.

void *getbytes16 (short size);

size The size to allocate in bytes.

getbytes16 is identical to getbytes except that it returns memory that is aligned to
a 16-byte boundary. This allows you to allocate storage for vector-optimized memory
at interrupt level. Note that any memory allocated with getbytes16 must be freed
with freebytes16, not freebytes.

freebytes16

Use freebytes16 to free memory allocated with getbytes16.

void freebytes16 (void *ptr, short size);

ptr A pointer to the block of memory previously allocated with
getbytes16 that you want to free.

size The size of this block in bytes.

Note that freebytes16 will cause memory corruption if you pass it memory that
was allocated with getbytes. Use it only with memory allocated with
getbytes16.

File Routines
These routines assist your object in opening and saving files using the standard file
package, as well as locating the user’s files in the Max search path. There have been a

Essential Max Utilities 72

significant number of changes to these routines (as well as the addition of many
functions), so some history may be useful in understanding their use.

Prior to version 4, Max used a feature of the Mac OS called "working directories" to
specify files. When you used the locatefile service routine, you would get back a
file name and a volume number. This name (converted to a Pascal string) and the
volume number could be passed to FSOpen to open the located file for reading. The
open_dialog routine worked similarly.

In Mac OS X, working directories are no longer supported. In addition, the use of
these "volume" numbers makes it somewhat difficult to port Max file routines to
other operating systems that specify files using complete pathnames (i.e.,
"C:\dir1\dir2\file.pat").

However, it is useful to be able to refer to the path and the name of the file
separately. The solution in Max 4 involves the retention of the volume number (now
called Path ID), but with a platform-independent wrapper that determines its
meaning. There are now calls to locate, open, and choose files using C filename
strings and Path IDs, as well as routines to convert between a ”native” format for
specifying a file (such as a full pathname on Windows or an FSSpec on the
Macintosh) to the C string and Path ID.

The path handling system in Max 4 works in two modes. In compatibility mode, a
Path ID is a working directory references. This mode is specified when the user has a
file called Path_Compatibility in their Max folder. If the file is not present, the Path
ID is an index into a table of paths maintained by the Max kernel. These paths are
stored internally in the native format of the host operating system (FSSpec on the
Mac, full pathnames on Windows).

Path Compatibility mode is only needed for objects that have not been updated for
Max 4's file handling. Once all objects have been updated, there will be no need to
use the compatibility mode.

The native path format is called a PATH_SPEC; it will be defined differently for each
target platform. Any code that deals directly with a PATH_SPEC must be considered
platform-specific (as will code that reads and writes file contents, which may dealt
with at a later date).

There are a large number of service routine in the Max 4 kernel that support files, but
only a handful will be needed by most external objects. In addition the the
descriptions that follow, you should consult the movie, folder and filedate examples
included with the SDK.

open_dialog

Use open_dialog to present the user with the standard open file dialog.

short open_dialog (char *filename, short *path,

OSType *dstType, SFTypeList typelist,
short numtypes);

filename A C string that will receive the name of the file the user wants to
open.

Essential Max Utilities 73

path Receives the Path ID of the file the user wants to open.

dstType The file type of the file the user wants to open.

typelist A list of file types to display. This is not limited to 4 types as in the
SFGetFile trap. Pass 0L to display all types.

numtypes The number of file types in typelist. Pass 0 to display all types.

This function is convenient wrapper for using Mac OS Navigation Services or
Standard File for opening files. open_dialog returns 0 if the user clicked Open in
the dialog box, and returns the name of the file picked as a C string in filename, its
volume reference number in vol, and its file type in dstType. If the user cancelled,
open_dialog returns a non-zero value.

The standard types to use for Max files are ‘maxb’ for binary files and ‘TEXT’ for text
files.

saveas_dialog

Use saveas_dialog to present the user with the standard save file dialog.

short saveas_dialog (char *filename, short *path,
short format);

filename A C string containing a default name for the file to save. If the user
decides to save a file, its name is returned here.

path If the user decides to save the file, the Path ID of the location chosen
is returned here.

format The default Max file format for saving the file. If format is set to 2,
the Normal binary mode will be selected. If format is 0, Text will
be selected. When the user decides to save the file, the choice of file
format is returned here. If you pass 0L for format instead of a
pointer to a short, the choice for saving the file in binary or text
formats is not presented to the user. This is appropriate when you
always save your object’s files in a specialized format. format 1 was
used in previous version of Max to save in "Old Format", which is
no longer supported.

This function is a convenient wrapper for using Navigation Services or Standard File
for saving files. It is appropriate when you are saving Binbufs, since it provides the
user with the option of saving the file as text or in a binary format. saveas_dialog
returns 0 if the user chose to save the file. If the user cancelled, a non-zero value is
returned.

saveasdialog_extended

Use saveasdialog_extended to present the user with a save file dialog with your
own list of file types.

Essential Max Utilities 74

short saveasdialog_extended(char *filename, short *path,

long *type, long *typelist,
short numtypes);

filename A C string containing a default name for the file to save. If the user
decides to save a file, its name is returned here.

path If the user decides to save the file, the Path ID of the location chosen
is returned here.

type Returns the type of file chosen by the user.

typelist The list of types provided to the user.

numtypes The number of types to be found in typelist.

saveasdialog_extended is similar to saveas_dialog, but allows the additional
feature of specifying a list of possible types. These will be displayed in a pop-up
menu.

File types found in the typelist argument that match known Max types will be
displayed with descriptive text. Unmatched types will simply display the type name
(for example, "foXx" is not a standard type so it would be shown in the pop-up menu
as foXx)

Known file types are:

TEXT – text file

maxb – Max binary patcher

maxc – Max collective

Midi – MIDI file

Sd2f – Sound Designer II audio file

NxTS – NeXT/Sun audio file

WAVE – WAVE audio file.

AIFF – AIFF audio file

mP3f – Max preference file

PICT – PICT graphic file

MooV – Quicktime movie file

aPcs – VST plug-in

AFxP – VST effect patch data file

AFxB – VST effect bank data file

DATA – Raw data audio file

ULAW – NeXT/Sun audio file

open_promptset

Use open_promptset to add a prompt message to the open file dialog displayed by
open_dialog.

Essential Max Utilities 75

short open_promptset (char *prompt);

prompt A C string containing the prompt you wish to display in the dialog
box.

Calling this function before open_dialog permits a string to displayed in the dialog
box instructing the user as to the purpose of the file being opened. It will only apply
to the call of open_dialog that immediately follows open_promptset.

saveas_promptset

Use saveas_promptset to add a prompt message to the open file dialog displayed
by saveas_dialog or saveasdialog_extended..

short saveas_promptset (char *prompt);

prompt A C string containing the prompt you wish to display in the dialog
box.

Calling this function before saveas_dialog permits a string to displayed in the
dialog box instructing the user as to the purpose of the file being saved. It will only
apply to the call of saveas_dialog that immediately follows saveas_promptset.

defvolume

Use defvolume to get the volume or directory the user accessed most recently.

short defvolume (void);

This function returns the Path ID of the volume or folder in which the most recent
file was opened. This routine performs the same function as the routine
path_getdefault.

locatefile

Use locatefile to find a Max document by name in the search path.

short locatefile (char *filename, short *path, short *binary);

filename A C string that is the name of the file to look for.

path The Path ID containing the location of the file if it is found.

binary If the file found is in binary format (it’s of type ‘maxb’) 1 is returned
here; if it’s in text format, 0 is returned.

locatefile searches through the directories specified by the user for Patcher files
and tables in the File Preferences dialog as well as the current default path (see

Essential Max Utilities 76

path_getdefault) and the directory containing the Max application. If a file is
found with the name specified by filename, locatefile returns 0, otherwise it
returns non-zero. The file’s Path ID is returned in path. binary is non-zero if file is
in Max binary format, 0 if it’s in text format. filename and vol can then be passed
to binbuf_read to read and open file the file. When using MAXplay, the search
path consists of all subdirectories of the directory containing the MAXplay
application. locatefile only searches for files of type ‘maxb’ and ‘TEXT.’

locatefiletype

Use locatefiletype to find a file by name and/or filetype and creator in the
search path.

short locatefiletype (char *filename, short *path,
OSType filetype, OSType creator);

filename A C string that is the name of the file to look for.

path The Path ID containing the location of the file if it is found.

filetype The filetype of the file to look for. If you pass 0L, files of all filetypes
are considered.

creator The creator of the file to look for. If you pass 0L, files with any
creator are considered.

This function searches through the same directories as locatefile, but allows you
to specify a type and creator of your own. locatefile, in contrast, searches for
only the standard types of Max files ‘maxb’ and ‘TEXT’. If locatefiletype has a
successful match, it returns 0, otherwise it returns non-zero.

locatefile_extended

Use locatefile to find a Max document by name in the search path. This is the
preferred method for file searching in Max 4.

short locatefile_extended(char *name, short *outpath,

long *outtype, long *typelist,
short numtypes);

name The file name for the search, receives actual filename.

outpath The Path ID of the file (if found).

outtype The file type of the file (if found).

typelist The file type(s) that you are searching for.

numtypes The number of file types in the typelist array (1 if a single entry).

The existing file search routines locatefile and locatefiletype are still
supported in Max 4, but the use of a new routine locatefile_extended is highly

Essential Max Utilities 77

recommended. However, locatefile_extended has an important difference from
locatefile and locatefiletype that may require some rewriting of your code.
It modifies its name parameter in certain cases, while locatefile and
locatefiletype do not. The two cases it where it could modify the incoming
filename string are 1) when an alias is specified, the file pointed to by the alias is
returned; and 2) when a full path is specified, the output is the filename plus the path
number of the folder it's in.

This is important because many people pass the s_name field of a t_symbol to
locatefile. If the name field of a symbol were to be modified, the symbol table
would be corrupted. To avoid this problem, use strcpy to copy the contents of a
t_symbol to a character string first, as shown below:

char filename[256];

strcpy(filename,str->s_name);
result = locatefile_extended(filename,&path,&type,typelist,1);

nameinpath

Use nameinpath to find a folder with a specific name in the Max search path.

short nameinpath(char *name, short *path);

name The name of the file for the search.

path A Path ID to search.

genpath

Use genpath to create a Path ID from a PATH_SPEC.

short genpath(PATH_SPEC *fs);

fs A valid PATH_SPEC.

genpath returns a Path ID for a valid PATH_SPEC. If the PATH_SPEC is already
found in the Max path table, the existing Path ID is returned. Otherwise, a new Path
ID will be created, and the path will be added to the Max path table.

path_lookup

Use path_lookup to determine if a PATH_SPEC is already in the Max path table.

short path_lookup(PATH_SPEC *fs);

fs A valid PATH_SPEC.

Essential Max Utilities 78

If the PATH_SPEC is found in the path table, the current Path ID will be returned. If
it is not found, path_lookup will return 0.

path_new

Use path_new to add a PATH_SPEC to the Max path table.

short path_new(PATH_SPEC *fs);

fs A valid PATH_SPEC

path_new will add the PATH_SPEC to the path table, and will return the Path ID. If
there is an error, or if memory cannot be allocated for another path table entry, the
routine will return 0.

path_tospec

Use path_tospec to load a PATH_SPEC from a Path ID/Name combination.

short path_tospec(short path, char *name, PATH_SPEC *fs);

path A Path ID, or 0 (for a fully qualified name argument).

name A file name (which can include partial or full qualification).

fs A PATH_SPEC structure to be loaded by this routine.

Given a Path ID and file name, path_tospec will return the complete PATH_SPEC for
a file. If name contains a fully qualified file name, path can be set to 0. The return
value is similar to MacOS file system calls – a value of 0 represents successful
completion, while a non-zero value represents failure (where the value may
represent an error code).

path_namefromspec

Use path_namefromspec to retrieve a file name from a PATH_SPEC.

void path_namefromspec(PATH_SPEC *fs, char *name);

fs A valid PATH_SPEC.

name A pointer to a character string that will receive the file name.

The name of the file is retrieved from the PATH_SPEC and copied to the name
parameter.

Essential Max Utilities 79

path_resolvefile

Use path_resolvefile to resolve a Path ID plus a (possibly extended) file name
into a path that identifies the file’s directory and a filename.

short path_resolvefile(char *name, short path, short
*outpath);

name A file name (which may be fully or partially qualified), will contain
the file name on return.

path The Path ID to be resolved.

outpath The Path ID of the returned file name.

This routine converts a name and Path ID to a standard form in which the name has
no path information and does not refer to an aliased file. It returns 0 if successful.

path_fileinfo

Use path_fileinfo to retrive a t_fileinfo structure from a file/path
combination.

short path_fileinfo(char *name, short path, void *info);

name The file name to be queried.

path The Path ID of the file.

info A structure of type t_fileinfo containing file information.

path_fileinfo retrieves OS-specific information about a file and returns it in a
OS-neutral t_fileinfo structure, declared as follows:

typedef struct _fileinfo
{

long type;
long creator; // Mac-only
long date;
long flags;

} t_fileinfo;

The flags variable may contain the following flags:

// fileinfo flags
enum {

FILEINFO_ALIAS = 1,
FILEINFO_FOLDER = 2

};

This routine returns 0 if successful, otherwise it returns an OS-specific error code.

Essential Max Utilities 80

path_openfile

Use path_openfile to open a file given a filename and Path ID.

short path_openfile(char *name, short path, FILE_REF *ref,
short perm);

name The name of the file to be opened.

path The Path ID of the file to be opened.

ref A FILE_REF that will contain the OS-specific pointer to a file. On
the Mac OS it is a file refNum that you can pass to FSRead, etc.

perm The file permission for the opened file.

This routine opens a file for reading or writing. The perm argument must contain one
of the enumerated values of READ_PERM, WRITE_PERM or RW_PERM. Like other
file system calls, this routine returns 0 if successful, and an OS-specific error code if
unsuccessful.

path_openresfile

Use path_openresfile to open the resource fork of a file given a filename and
Path ID.

short path_openresfile(char *name, short path, FILE_REF *ref,
short perm);

name The name of the file to be opened.

path The Path ID of the file to be opened.

ref A FILE_REF that will contain the OS-specific pointer to a file. On
the Mac OS it is a file refNum that you can pass to FSRead, etc.

perm The file permission for the opened file.

This routine opens the resource fork of a file in an OS-neutral manner. The perm
argument must contain one of the enumerated values of READ_PERM,
WRITE_PERM or RW_PERM. Like other file system calls, this routine returns 0 if
successful, and an error code if unsuccessful.

path_createfile

Use path_createfile to create a file given a type code, a filename and a Path ID.

short path_createfile(char *name, short path, long type,
FILE_REF *ref);

Essential Max Utilities 81

name The name of the file to be created.

path The Path ID of the file to be created.

type The file type of the created file.

ref A FILE_REF containing a pointer to the opened file.

path_createfile will create a new file in an OS-neutral manner and open it for
reading and writing. If the file already exists, a new file is created in its place. Like
other file system calls, this routine returns 0 if successful, and an OS-specific error
code if unsuccessful.

path_createresfile

Use path_createresfile to create an empty resource fork given a type code, a
filename and a Path ID.

short path_createresfile(char *name, short path, long type,
FILE_REF *ref);

name The name of the file to contain the resource fork.

path The Path ID of the file to contain the resource fork.

type The file type of the file. If the file already exists, this argument is
ignored.

ref A FILE_REF containing a pointer to the resource file in the form of a
reference number that can be passed to UseResFile and
CloseResFile.

If the file identified by name, path and type does not already exist, a new “resource”
file will be created with an empty data fork. Like other file system calls, this routine
returns 0 if successful, and an error code if unsuccessful.

path_translate

Use path_translate to create a valid Path ID and file name from a PATH_SPEC,
including optional alias resolution.

short path_translate(PATH_SPEC *fs, char *name, short *vol,
short resolvealias);

fs The PATH_SPEC to translate.

name The name of the file contained in PATH_SPEC fs.

vol The Path ID of the file identified by PATH_SPEC fs.

resolvealias If non-zero, and if the PATH_SPEC contains an alias, the returned
name/Path ID will refer to the file pointed to by the alias.

Essential Max Utilities 82

path_translate is used to completely convert a PATH_SPEC into a Path ID and
filename combination. Unlike path_namefromspec and genpath, resolution of
aliases is available. Like other file system calls, this routine returns 0 if successful,
and an error code if unsuccessful.

path_topathname

Use path_topathname to create a fully qualified file name from a Path ID/file
name combination.

short path_topathname(short path, char *file, char *name);

path The path to be used.

file The file name to be used.

name Loaded with the fully extended file name on return.

This routine returns 0 if successful, and an error code if unsuccessful

path_frompathname

Use path_frompathname to create a filename and Path ID combination from a
fully qualified file name.

short path_frompathname(char *name, short *path,
char *filename);

name The extended file path to be converted.

path Contains the Path ID on return.

filename Contains the file name on return.

path_frompathname will return the Path ID and filename from a file path. It
performs alias resolution in the conversion. This routine returns 0 if successful, and
an error code if unsuccessful. Note that path_frompathname does not require that the
file actually exist. In this way you can use it to convert a full path you may have
received as an argument to a file writing message to a form appropriate to provide to
a routine such as path_createfile.

path_setdefault

Use path_setdefault to install a path as the default search path.

void path_setdefault(short path, short recursive);

path The path to use as the search path.

Essential Max Utilities 83

recursive If non-zero, all subdirectories will be installed in the default search
list.

The default path is searched before the Max search path. For instance, when loading
a patcher from a directory outside the search path, the pathcer’s directory is searched
for files before the search path. path_setdefault allows you to set a path as the
default.

If path is already part of the Max Search path, it will not be added (since, by default,
it will be searched during file searches). Be very careful with the use of the recursive
argument – it has the capacity to slow down file searches dramatically as the list of
folders is being built. Max itself never creates a hierarchical default search path.

path_getdefault

Use path_getdefault to retrieve the Path ID of the default search path.

short path_getdefault(void);

path_getdefault returns the Path ID of the last path passed to
path_setdefault. The routine for retrieving the default path in previous
versions, defvolume, is still available and has the same effect as calling
path_getdefault.

path_getmoddate

Use path_getmoddate to determine the modification date of the selected path.

short path_getmoddate(short path, unsigned long *date);

path The Path ID of the directory to check.

date The last modification date of the directory.

path_getfilemoddate

Use path_getfilemoddate to retrieve the modification date of a specified file.

short path_getfilemoddate(char *filename, short path,
unsigned long *date);

filename The name of the file to query.

path The Path ID of the file.

date Contains the last modification date on return.

path_getapppath

Use path_getapppath to retrieve the Path ID of the Max application.

Essential Max Utilities 84

short path_getapppath(void);

The return value is the Path ID of the Max application or runtime.

Routines for Iterating Through Folders

The following routines allow you to iterate through all of the files in a path.

path_openfolder

Use path_openfolder to prepare a directory for iteration.

void *path_openfolder(short path);

path The directory Path ID to open.

The return value of this routine is an internal “folder state” structure used for further
folder manipulation. It should be saved and used for calls to
path_foldernextfile and path_closefolder. If the folder cannot be found or
accessed, path_openfolder returns 0.

path_foldernextfile

Use path_foldernextfile to get the next file in the directory.

short path_foldernextfile(void *xx, long *filetype,
char *name, short descend);

xx The “folder state” value returned by path_openfolder.

filetype Contains the file type of the file type on return.

name Contains the file name of the next file on return.

descend Unused.

In conjunction with path_openfolder and path_closefolder, this routine
allows you to iterate through all of the files in a path. path_foldernextfile may
return a folder, in which case the filetype argument will contain ‘fold’. This routine
returns 0 if successful, and an error code if unsuccessful.

path_foldergetspec

Use path_foldergetspec to retrieve more information from a file in a directory.

short path_foldergetspec(void *xx, PATH_SPEC *spec,
short resolve);

xx The “folder state” value returned by path_openfolder.

Essential Max Utilities 85

spec The PATH_SPEC to contain additional information.

resolve If non-zero, will resolve a file alias into an actual file.

Use path_foldergetspec to retrieve information held in a PATH_SPEC structure for
the file at the current position in a folder iteration. This routine returns 0 if
successful, and an error code if unsuccessful.

path_closefolder

Used path_closefolder to complete a directory iteration.

void path_closefolder(void *x);

x The “folder state” value originally returned by path_openfolder.

This routine should be used whenever a directory iteration has been completed.

A File Handling Example

Below is an example where we use an object's read method in conjunction with
open_dialog and locatefile_extended. This is how we've bound the read
method in the initialization routine.

addmess((method)myobject_read, "read", A_DEFSYM, 0);
// optional symbol argument to specify name

Here is the first part of the actual read method, deferred to a routine called
myobject_doread.

void myobject_read(t_myobject *x, t_symbol *s)
{

defer(x,(method)myobject_doread,s,0,0); // always defer this message
}

void myobject_doread(t_myobject *s, t_symbol *s, short argc, t_atom *argv)
{

char filename[256];
short path, err;
long type = 'DATA'; // some file type you're looking for
long outtype;
FILE_REF fd;

if (!s->s_name[0]) { // empty symbol
if (open_dialog(filename, &path, &outtype, &type, 1))

return; // user cancelled
} else {

strcpy(filename,s->s_name);
// important: copy symbol arg to local string

Essential Max Utilities 86

if (locatefile_extended(filename,&path,&outtype,&type,1))
return; // not found

}

// at this point, a valid name is in filename and
// a valid path is in path

A FILE_REF is an OS-specific way of referring to an open file. On the Mac OS, it's a
short passed to routines such as FSRead and FSClose. The perm parameter can be
either READ_PERM, WRITE_PERM, or RW_PERM.

When the permission is RW_PERM or WRITE_PERM, path_openfile takes care of
creating the file—this replaces a lot of code on the Mac OS, since you receive an error
if you attempt to create a file with an existing name, then have to try again to
sucessfully open the file. path_openfile provides all of this functionality.

Continuing with the myobject_doread example:

// open file for reading
err = path_openfile(filename,path,&fd,READ_PERM);
if (err) {

// report any errors
error("%s: error %d opening file",filename,err);
return;

}
// read from the file…
// close it..

}

Advanced Facilities 87

The following sections discuss capabilities that most objects will not need to use, but
may be of interest to advanced programmers.

Advanced Object Creation and Message Routines
These routines allow you to create your own instances of classes—either existing
ones or those you define—and send them “untyped” messages. Untyped messages
are those whose type list contains the constant A_CANT and cannot be sent directly
by a user using a message box connected to an inlet of your object.

newinstance

Use newinstance to make a new instance of an existing Max class.

t_object *newinstance (t_symbol *className, short argc,
t_atom *argv);

className Symbol specifying the name of the class of the instance to be
created.

argc Count of arguments in argv.

argv Array of t_atoms; arguments to the class’s instance creation
function.

This function creates a new instance of the specified class. Using newinstance is
equivalent to typing something in a New Object box when using Max. The difference
is that no object box is created in any Patcher window, and you can send messages to
the object directly without connecting any patch cords. The messages can either be
type-checked (using typedmess) or non-type-checked (using the members of the
getfn family).

newinstance returns a pointer to the created object, or 0 if the class didn’t exist or
there was another type of error in creating the instance. This function is useful for
taking advantage of other already-defined objects that you would like to use
“privately” in your object, such as tables. See the source code for the coll object for an
example of using a privately defined class.

C H A P T E R 9

Advanced Facilities

Advanced Facilities 88

typedmess

Use typedmess to send a typed message directly to a Max object.

void *typedmess (void *receiver, t_symbol *message,
short argc, t_atom *argv);

receiver Max object that will receive the message.

message The message selector.

argc Count of message arguments in argv.

argv Array of t_atoms; the message arguments.

typedmess sends a message to a Max object (receiver) a message with
arguments. If the receiver object can respond to the message, typedmess returns
the result. Otherwise, an error message will be seen in the Max window and 0 will be
returned. Note that the message must be a t_symbol, not a character string, so you
must call gensym on a string before passing it to typedmess. Also, note that
untyped messages defined for classes with the argument list A_CANT cannot be sent
using typedmess. You must use getfn etc. instead described below.

Example: If you want to send a bang message to the object bang_me…

void *bangResult;

bangResult = typedmess(bang_me,gensym("bang"),0,0L);

Routines for Sending Untyped Messages
The following three routines send non type-checked messages to objects. You are
responsible for passing the message arguments correctly. System errors, rather than
error messages in the Max window, are likely if you don’t. These functions could be
useful with an object created with newinstance.

getfn

Use getfn to send an untyped message to a Max object with error checking.

method getfn (t_object *obj, t_symbol *msg);

obj Receiver of the message.

msg Message selector.

getfn returns a pointer to the method bound to the message selector msg in the
receiver’s message list. It returns 0 and prints an error message in Max Window if the
method can’t be found.

Advanced Facilities 89

egetfn

Use egetfn to send an untyped message to a Max object that always works.

method egetfn (t_object *obj, t_symbol *msg);

obj Receiver of the message.

msg Message selector.

egetfn returns a pointer to the method bound to the message selector msg in the
receiver’s message list. If the method can’t be found, a pointer to a do-nothing
function is returned.

zgetfn

Use zgetfn to send an untyped message to a Max object without error checking.

method zgetfn (t_object *obj, t_symbol *msg);

obj Receiver of the message.

msg Message selector.

zgetfn returns a pointer to the method bound to the message selector msg in the
receiver’s message list. It returns 0 but doesn’t print an error message in Max
Window if the method can’t be found.

Using Untyped Messages

The macros mess0, mess1, mess2, etc. defined in ext_mess.h are useful for sending
non type-checked messages. Here’s an illustration of using newinstance and non
type-checked messages.

In this example, the bob object’s info method creates an instance of the joe class,
sends it an info message (which presumably does something) and destroys the
instance of joe.

void bob_info(Bob *x, void *p, void *b)
{

void *joe;

joe = newinstance(gensym("joe"),0,0L); /* create a joe */
mess2(joe,gensym("info"),p,b); /* send untyped message */
freeobject(joe); /* kiss joe goodbye */

}

Advanced Facilities 90

Table Access
You can use these functions to access named table objects. Tables have names when
the user creates a table with an argument, such as…

The scenario for knowing the name of a table but not the object itself is if you were
passed a Symbol, either as an argument to your creation function or in some
message, with the implication being “do your thing with the data in the table named
norris.”

table_get

Use table_get to get a handle to the data in a named table object.

short table_get (t_symbol *tableName, long ***dstHandle,
long *dstSize);

tableName Symbol containing the name of the table object to find.

dstHandle Address of a handle where the table’s data will be returned if the
named table object is found.

dstSize Number of elements in the table (its size in longs).

table_get searches for a table associated with the t_symbol tableName. If one is
found, a Handle to its elements (stored as an array of long integers) is returned and
the function returns 0. If no table object is associated with the symbol tableName,
table_get returns a non-zero result. Never count on a table to exist across calls to
one of your methods. Call table_get and check the result each time you wish to
use a table.

Here is an example of retrieving the 40th element of a table:

long **storage,size,value;

if (!table_get(gensym("somename"),&storage,&size)) {
if (size > 40)

value = *((*storage)+40);
}

table_dirty

Use table_dirty to mark a table object as having changed data.

short table_dirty (t_symbol *tableName);

tableName Symbol containing the name of a table object.

Advanced Facilities 91

Given the name of a table object in tableName, table_dirty sets its dirty bit, so the
user will asked to save changes if the table is closed. If no table is associated with
tableName, table_dirty returns a non-zero result.

Text Editor Windows
Max has a simple built-in text editor object Ed that can display and edit text in
conjunction with your object. The routines described below let you create a text
editor.

When the editor window is about to be closed, your object could receive as many as
three messages. The first one, okclose, will be sent if the user has changed the text in
the window. This is the standard okclose message that is sent to all “dirty” windows
when they are about to be closed, but the text editor window object passes it on to
you instead of doing anything itself. Refer to the section on Window Messages for a
description of how to write a method for the okclose message. It’s not required that
you write one—if you don’t, the behavior of the window will be determined by the
setting of the window’s w_scratch bit (described in Chapter 10). If it’s set, no
confirmation will be asked when a dirty window is closed (and no okclose message
will be sent to the text editor either). The second message, edclose, requires a method
that should be added to your object at initialization time. The third message, edSave,
allows you to gain access to the text before it is saved, or save it yourself.

edclose

edclose will be sent to your object in the following two cases:

• The window’s w_scratch bit has been set

• The user clicked on Save in the “Save Changes?” alert placed on the screen when
the window was about to be closed. The window’s w_scratch bit was not set in
this case.

BINDING

addmess (myObject_edclose, "edclose", A_CANT, 0);

DECLARATION

void myobject_edclose (Myobject *obj, char **text, long size);

text A handle to the edited text.

size The size of the handle in bytes.

In this method, the editor will hand you the text in the editing window. If you set the
window’s w_scratch bit, you might want to know if the text in the window was
modified by the user. The definition of the text editing object t_ed is in ext_edit.h.
Use the following code to check the dirty bit of the editor’s window (assume that x-
>m_edit points to your text editor object).

Advanced Facilities 92

if (x->m_edit->e_wind->w_dirty)
/* has been modified */

In the case where the text has been modified, you can update the state of your object
using the text arguments of the edclose message.

After receiving an edclose message, the text editor window is destroyed, so it’s
important to note this in the internal state of your object. It’s a good idea to set the
field of your object that points to the text editor to 0 at this point.

edsave

The edsave message allows your object to customize the file saving of a text-editing
window.

BINDING

addmess (myObject_edsave, "edsave", A_CANT, 0);

DECLARATION

void *myobject_edsave (myObject *x, char **text, long size,
char *filename, short vol);

text Handle to the text buffer.

size Length of the text buffer.

filename C string containing the file’s name. The file may need to be created.

vol Volume reference number specifying the location of the file.

Your object will receive this message when a text editor file is about to be saved.
Your method can save the text in the specified file in any format it desires. If you just
wanted to gain access to the text without saving it, return 0 from this function, and
the normal file saving procedure will be used. Otherwise, return any non-zero value.

ed_new

Use ed_new to make a new text editing window.

t_ed *ed_new (t_object *assoc);

assoc The object associated with the text editing window. Normally this is
a pointer to your object.

This function creates a new text-editing window. The text editor will be visible
immediately. assoc should be a pointer to your object, so it can receive the all-
important edclose message. You should store the result of ed_new in your object for
two reasons. First, so you can call ed_settext to set the text in the window and
second, so you can call ed_vis to bring the window to the front when your object
receives a dblclick message.

Advanced Facilities 93

ed_settext

Use ed_settext to set the contents of a text-editing window.

void ed_settext (t_ed *ew, Handle textHandle, long textSize);

ew The text editing window object.

textHandle Handle containing the text to put in the window.

textSize Number of characters in the textHandle.

ed_settext the text in a text editing window to the characters in textHandle. The
window will be refreshed to show the new text.

ed_vis

Use ed_vis to bring the text-editing window to the front.

void ed_vis (t_ed *ew);

ew The text editing window object.

If you want to implement the standard behavior for text editor windows, you’ll make
yours visible only after receiving a dblclick message. Since the editor window is
immediately visible when created with ed_new, don’t create an editor in your object
creation function. Rather, initialize the slot for storing your editor to 0 when your
object is created. Then you can determine whether you need to create a new editor in
your dblclick method, or bring one that already exists to the front. Here’s an example
dblclick method. We assume that x->m_edit is a field in your object that contains a
text editor.

void myobject_dblclick(Myobject *x)
{

if (x->m_edit)
ed_vis(x->m_edit);

else {
x->m_edit = ed_new(x);
/* set text of editor here with ed_settext */

}
}

Access to expr Objects
If you want to use C-like variable expressions that are entered by a user of your
object, you can use the “guts” of Max’s expr object in your object. For example, the if
object uses expr routines for evaluating a conditional expression, so it can decide
whether to send the message after the words then or else. The following functions
provide an interface to expr.

Advanced Facilities 94

Note: As with Binbuf, Clock, and Qelem, the Expr type is just pointer to void.
Constants and other declarations needed to use Expr are found in ext_expr.h.

expr_new

Use expr_new to create a new expr object.

Expr *expr_new (short argc, t_atom *argv, t_atom *types);

argc Count of arguments in argv.

argv Arguments that are used to create the expr. See the example below
for details.

types A pre-existing array of nine t_atoms, that will hold the types of any
variable arguments created in the expr. The types are returned in
the a_type field of each t_atom. If an argument was not present,
A_NOTHING is returned.

expr_new creates an expr object from the arguments in argv and returns the type
of any expr-style arguments contained in argv (i.e. $i1, etc.) in atoms in an array
pointed to by types. types should already exist as an array of nine Atoms, all of
which will be filled in by expr_new. If an argument was not present, it will set to
type A_NOTHING. For example, suppose argv pointed to the following atoms:

$i1 (A_SYM)

+ (A_SYM)
$f3 (A_SYM)
+ (A_SYM)

3 (A_LONG)

After calling expr_new, types would contain the following:

Index Argument Type Value
0 1 ($i1) A_LONG 0
1 2 A_NOTHING 0
2 3 ($f3) A_FLOAT 0.0
3 4 A_NOTHING 0
4 5 A_NOTHING 0
5 6 A_NOTHING 0
6 7 A_NOTHING 0
7 8 A_NOTHING 0
8 9 A_NOTHING 0

expr_eval

Use expr_eval to evaluate an expression in an expr object.

Advanced Facilities 95

void expr_eval (Expr *ex, short argc, t_atom *argv,
t_atom *result);

ex expr object to evaluate.

argc Count of arguments in argv.

argv Array of nine Atoms that will be substituted for variable arguments
(such as $i1) in the expression. Unused arguments should be of type
A_NOTHING.

result A pre-existing Atom that will hold the type and value of the result
of evaluating the expression.

Evaluates the expression in an expr object with arguments in argv and returns the
type and value of the evaluated expression as a t_atom in result. result need
only point to a single t_atom, but argv should contain at least argc Atoms. If, as in
the example shown above under expr_new, there are “gaps” between arguments,
they should be filled in with t_atom of type A_NOTHING.

Presets
Max contains a preset object that has the ability to send preset messages to some or all
of the objects (clients) in a Patcher window. The preset message, sent when the user is
storing a preset, is just a request for your object to tell the preset object how to restore
your internal state to what it is now. Later, when the user executes a preset, the preset
object will send you back the message you had previously said you wanted.

The dialog goes something like this:

• During a store…
preset object to Client object(s): hello, this is the preset message—tell me how to
restore your state
Client object to preset object: send me int 34 (for example)

• During an execute…
preset object to Client object: int 34

The client object won’t know the difference between receiving int 34 from a preset
object and receiving a 34 in its leftmost inlet.

It’s not mandatory for your object to respond to the preset message, but it is something
that will make users happy. All Max user interface objects currently respond to preset
messages. Note that if your object is not a user interface object and implements a preset
method, the user will need to connect the outlet of the preset object to its leftmost
inlet in order for it to be sent a preset message when the user stores a preset.

Here are routines you can use when responding to the preset message.

preset_int

Use preset_int to restore the state of your object with an int message.

void preset_int (t_object *obj, long value);

Advanced Facilities 96

obj Your object.

value Current value of your object.

This function causes an int message with the argument value to be sent to your
object from the preset object when the user executes a preset. All of the existing user
interface objects use the int message for restoring their state when a preset is
executed.

preset_set

Use preset_set to restore the state of your object with a set message.

void preset_set (t_object *obj, long value);

obj Your object.

value Current value of your object.

This function causes a set message with the argument value to be sent to your object
from the preset object when the user executes a preset.

preset_store

Use preset_store to give the preset object a general message to restore the
current state of your object.

void preset_store (char *format, void *items, ...);

format C string containing one or more letters corresponding to the types
of each element of the message. s for Symbol, l for long, or f for
float.

items Elements of the message used to restore the state of your object,
passed directly to the function as Symbols, longs, or floats. See
below for an example that conforms to what the preset object
expects.

This is a general preset function for use when your object’s state cannot be restored
with a simple int or set message. The example below shows the expected format for
specifying what your current state is to a preset object. The first thing you supply is
your object itself, followed by the symbol that is the name of your object’s class
(which you can retrieve from your object using the macro ob_sym, declared in
ext_mess.h). Next, supply the symbol that specifies the message you want receive (a
method for which had better be defined in your class), followed by the arguments to
this message—the current values of your object’s fields.

Here’s an example of using preset_store that specifies that the object would like
to receive a set message. We assume it has one field, myvalue, which it would like to
save and restore.

Advanced Facilities 97

void myobject_preset(myobject *x)
{

preset_store("ossl",x,ob_sym(x),gensym("set"),x->myvalue);
}

When this preset is executed, the object will receive a set message whose argument
will be the value of myvalue. Note that the same thing can be accomplished more
easily with preset_set and preset_int discussed below.

Don’t pass more than 12 items to preset_store. If you want to store a huge
amount of data in a preset, use binbuf_insert. The following example locates the
Binbuf into which the preset data is being collected, then calls binbuf_insert on a
previously prepared array of Atoms. It assumes that the state of your object can be
restored with a set message.

void myobject_preset(myObject *x)
{

void *preset_buf; /* Binbuf that stores the preset */
short atomCount; /* number of atoms you’re storing */
t_atom atomArray[SOMESIZE]; /* array of atoms to be stored

*/

/* 1. prepare the preset "header" information */
SETOBJ(atomArray,x);
SETSYM(atomArray+1,ob_sym(x));
SETSYM(atomArray+2,gensym("set"));

/**fill atomArray+3 with object's state here and set atomCount*/

/* 2. find the Binbuf */
preset_buf = gensym("_preset")->s_thing;

/* 3. store the data */
if (preset_buf) {

binbuf_insert(preset_buf,NIL,atomCount,atomArray);
}

}

Event and File Serial Numbers
If you call outlet_int, outlet_float, outlet_list, or outlet_anything
inside a Qelem or during some idle or interrupt time, you should increment Max’s
Event Serial Number beforehand. This number can be read by objects that want to
know if two messages they have received occurred at the same logical “time” (in
response to the same event). Max increments the serial number for each tick of the
clock, each key press, mouse click, and MIDI event. Note that this is different from
the file serial number returned by the serialno function. The file serial number is
only incremented when patchers are saved in files. If more than one patcher is saved
in a file, the file serial number will change but the event serial number will not.

Advanced Facilities 98

evnum_incr

Use evnum_incr to increment the event serial number.

void evnum_incr (void);

evnum_get

Use evnum_get to get the current value of the event serial number.

long evnum_get (void);

serialno

Use serialno to get a unique number for each Patcher file saved.

short serialno (void);

This function returns a serial number that is incremented each time a Patcher file is
saved. This routine is useful for objects like table and coll that have multiple objects
that refer to the same data, and can “embed” the data inside a Patcher file. If the
serial number hasn’t changed since your object was last saved, you can detect this
and avoid saving multiple copies of the object’s data.

Using Event Serial Numbers

Here is a Max patch that includes an object called simul that would use the
information returned by evnum_get to return a 1 if the right and left inlets receive
messages at the same time, 0 if not. The number boxes below show the results of
clicking on the button objects or typing a key.

Advanced Facilities 99

OMS Access
To access OMS, you should use OMSGluePPC.lib in your CodeWarrior or MPW
projects. To determine if OMS is installed, use the OMS routine OMSVersion. To see
whether Max is using OMS, use midiinfo. Max is using OMS when the inPorts and
outPorts pointers are non-zero. (It probably suffices to check the return value from
OMSVersion, since Max will use OMS if it finds it.) You’ll also need to include
OMS.h, and to access the Max-specific OMS information, ext_oms.h.

midiinfo

Use midiinfo to find out about the current MIDI environment.

void midiinfo (MidiInfoRec *world);

world A structure where the information about the current MIDI
environment will be placed. See below for the declaration of the
MidiInfoRec structure.

The format of the information returned by midiinfo is defined in ext_midi.h and is
as follows:

typedef struct {
short usingCalamari;
short nInPorts;
short nOutPorts;
short inRefNum[16];
short outRefNum[14];
Byte *inPorts;
short intTimeRefNum;
short timeInRefNum;
short timeOutRefNum;
Byte *outPorts;

} MidiInfoRec;

When using OMS, midiinfo sets inPorts and outPorts to point to an
OMSMaxPortList structure listing the OMS input and output ports. The rest of the
data is undefined (it was used for getting info about Max’s use of the MIDI
Manager.) OMSMaxPortList is defined in ext_oms.h. When OMS is not in use, these
items are set to 0. (To determine whether OMS is in use, simply test whether
inPorts is non-zero.)

OMS Timing routines cannot be called directly from a Max external object, but if it is
in use (which is almost certainly true if you are using OMS 2.0 or later),
timeInRefNum will be set to –1, otherwise it is 0.

Loading Max Files
Several high-level functions permit you to load patcher files. These can be used in
sophisticated objects that use Patcher objects to perform specific tasks.

Advanced Facilities 100

stringload

Use stringload to load a patcher file located in the Max search path by name.

void *stringload (char *name);

name Filename of the patcher file to load (C string).

This function searches for a binary or text patcher file, opens it, evaluates it as a
patcher file, opens a window for the patcher and brings it to the front. You need only
specify a filename and Max will look through its search path for the file. The search
path begins with the current “default volume” that is often the volume of the last
opened patcher file, then the folders specified in the File Preferences dialog, searched
depth first, then finally the folder that contains the Max application. If stringload
returns a non-zero result, you can later use freeobject to close the patcher, or just
let users do it themselves. If stringload returns zero, no file with the specified
name was found or there was insufficient memory to open it.

fileload

Use fileload to load a patcher file by name and volume reference number.

void *fileload (char *name, short path);

name Filename of the patcher file to load (C string).

path Path ID specifying the location of the file.

fileload requires that you specify a Path ID for the path argument, such as is
returned from open_dialog or locatefile_extended. If the file is found,
fileload tries to open the file, evaluate it, open a window, and bring it to the front.
A pointer to the newly created Patcher is returned if loading is successful, otherwise,
if the file is not found or there is insufficient memory, zero is returned.

readtohandle

Use readtohandle to load a data file into a handle.

short readtohandle (char *name, short path, char ***hp,
long *size);

name Name of the patcher file to load.

path Path ID specifying the location of the file.

hp Pointer to a handle variable that will receive the handle that
contains the data in the file.

size Size of the handle returned in hp.

Advanced Facilities 101

This is a low-level routine used for reading text and data files. You specify the file’s
name and Path ID, as well as a pointer to a Handle. If the file is found,
readtohandle creates a Handle, reads all the data in the file into it, assigns the
handle to the variable hp, and returns the size of the data in size. readtohandle
returns 0 if the file was opened and read successfully, and non-zero if there was an
error.

lowload

Use lowload to pass arguments to Max files when you open them.

void *lowload (char *filename, short path, short argc,
t_atom *argv, short couldedit);

filename Name of the file to open.

path Path ID specifying the location of the file.

argc Count of t_atoms in argv. To properly open a patcher file, argc
should be 9.

argv Array of t_atoms that will replace the changeable arguments #1-#9.
The default behavior could be to set all these to t_atoms of type
A_LONG with a value of 0.

couldedit If non-zero and the file is not a patcher file, the file is opened as a
text file.

This function loads the specified file and returns a pointer to the created object.
Generally, lowload is used to open patcher files, whether they are in text or Max
binary format. It can also open table files whose contents begin with the word
“table.”

If couldedit is non-zero and the file is not a patcher file, it is made into a text editor,
and lowload returns 0. If couldedit is non-zero, lowload will just alert the user to an
error and return 0. If there is no error, the value returned will be a pointer to a
patcher or table object.

Connecting Objects As Clients and Servers
The Connection facility in Max allows two or more objects that may not be created or
destroyed at the same time to be linked together via a standard set of routines and
messages. This might be useful if you wish to provide an editor for a named data
structure (such as a coll or table object) that automatically displays the named data
when a corresponding object is loaded, and is updated when the corresponding data
is changed in some way.

Connections involve clients, the objects that wish to access the data, and servers,
objects that can be found by name when they attach themselves to a particular
symbol. A table object could be a server (and in fact is—you can use the Connection
routines to communicate with one). To establish your object is a client, you call

Advanced Facilities 102

connection_client. To establish your object as a server, call
connection_server. If and when one or more clients and a server exist for the
same name, the client objects will receive the newserver message. When a server
attached to clients is freed, it calls connection_delete and its clients receive the
freeserver message. In addition, the server can define messages to send to its clients.
For example, the table object sends the message tabchanged to its clients when its data
changes. This is done through the function connection_send so that the server
does not need to keep track of its clients.

connection_client

Use connection_client to register a client with a symbolic name.

void *connection_client (void *client, t_symbol *name,
t_symbol *class, method traverse);

client Client object to be registered.

name Name under which the client will be registered.

class Name of the class of the server. For a Max object obj, this is
ob_sym(obj).

traverse A function that allows the connection facility to link multiple clients
together by returning a pointer to a field within the client object that
can be used for this purpose. Thus, in order to use the connection
routines, the client object’s data structure must include a link
pointer variable to this same data structure. See below for an
example of a traversal function.

This function registers a client with a name. If a server with this name already exists
and has already registered by calling connection_server, connection_client
will cause the object client to receive the newserver message (see below). Otherwise,
the newserver message will be sent to the client whenever a server object with the
specified name calls connection_server.

Here’s an example of a traversal function you’d pass as the traverse argument. First,
here’s a data structure with a link pointer in it.

typedef struct myclient {
t_object c_ob;
struct myclient *c_next;
void *c_data;

} t_myclient;

The traverse method is declared as:

void *myobject_traverse(t_myobject *x, t_myobject ***ptr);

The function should set ptr to the address of the “points to next” field in the data
structure, and then return the current contents of this field. For the Myclient data
structure shown above, the traverse method would look like this:

Advanced Facilities 103

void *myclient_traverse(t_myclient *x, t_myclient ***addr)
{

*addr = &x->c_next;
return (x->c_next);

}

connection_server

Use connection_server to register a server with a symbolic name.

void connection_server (void *server, t_symbol *name);

server Server object to be registered.

name Name under which the server will be registered.

This function registers an object server with a name (name). If client objects already
exist that are attached to this name and whose class is the same as the server
object’s, they are informed of the presence of the server object with the newserver
message. This method should be declared as follows:

void myobject_newserver (t_myobject *x, void *server);

Using this method, the client can store a reference to the server if it needs direct
access to the object.

After calling connection_server, a server can send messages to all its clients
using connection_send.

connection_send

Use connection_send to send messages from a server to all its clients.

void connection_send (void *server, t_symbol *name,
t_symbol *message, void *arg);

server Registered server object.

name Name under which the server is registered.

message Message selector.

arg Message argument.

connection_send verifies the connection status of the object server bound to the
symbol name, then sends the untyped message specified by the symbol message
(along with arg) to any currently connected clients. Since the server never knows
when it actually has clients, it should call connection_send in all possible
situations. If there are no clients, connection_send will do nothing (safely).

Advanced Facilities 104

connection_delete

Use connection_delete to remove a client or server from a connection.

void connection_delete (void *obj, t_symbol *name);

obj Registered client or server object.

name Name under which the client or server is registered.

Both clients and servers use connection_delete (passing themselves as the
object argument) when they want to break a connection (usually in an object’s free
function). The name of the connection is supplied in name. If connection_delete
is called by a server, all connected clients will receive the freeserver message. This
message should be implemented as follows:

void myobject_freeserver (t_myobject *x, void *server);

After receiving this message, a client should make no further direct references to the
object server, since it is likely being disposed of.

Error Message Subscription
In certain cases, it may be desireable to receive error messages that are sent to the
Max window.

error_subscribe

Use error_subscribe to receive messages from the error handler.

void error_subscribe(t_object *myobject);

myobject The object subscribed to the error handler.

error_subscribe enables your object to receive a message (error), followed by the
list of atoms in the error message posted to the Max window.

Prior to calling error_subscribe, you should bind the error message to an
internal error handling routine:

addmess((method)myobject_error, "error", A_GIMME, 0);

Your error handling routine should be declared as follows:

void myobject_error(t_myobject *x, t_symbol *s, short argc,
t_atom *argv);

Advanced Facilities 105

error_unsubscribe

Use error_unsubscribe to remove an object as an error message recipient.

void error_unsubscribe(t_object *myobject);

myobject The object to unsubscribe.

myobject will no longer receive error messages after this call.

Scheduling with setclock Objects
The setclock object allows a more general way of scheduling Clocks by generalizing
the advancement of the time associated with a scheduler. Each setclock object’s
“time” can be changed by a process other than the internal millisecond clock. In
addition, the object implements routines that modify the mapping of the internal
millisecond clock onto the current value of time in an object. Your object can call a set
of routines that use either setclock or the normal millisecond clock transparently.
Many Max objects accept the message clock followed by an optional symbol to set
their internal scheduling to a named setclock object. The typical implementation
passes the binding of a Symbol (the s_thing field) to the Setclock functions. By
default, the empty symbol is passed. If the binding has been linked to a setclock
object, it will be used to schedule the Clock. Otherwise, the Clock is scheduled using
the main internal millisecond scheduler. The Setclock data structure is a replacement
for void * since there will be no reason for external objects to access it directly.

setclock_delay

Use setclock_delay to schedule a Clock on a scheduler.

void setclock_delay (Setclock *scheduler, Clock *clk,
long time);

scheduler A setclock object to be used for scheduling this clock.

clk Clock object containing the function to be executed.

time Time delay (in the units of the Setclock) from the current time when
the Clock will be executed.

Schedules the Clock clk to execute at time units after the current time. If
scheduler is 0 or does not point to a setclock object, the internal millisecond
scheduler is used. Otherwise clk is scheduled on the setclock object’s list of Clocks.
The Clock should be created with clock_new, the same as for a Clock passed to
clock_delay.

Advanced Facilities 106

setclock_fdelay

Use setclock_fdelay to schedule a Clock on a scheduler, using a floating-point time
argument.

void setclock_fdelay(Setclock *scheduler, Clock *clk,
double time);

scheduler A setclock object to be used for scheduling this clock.

clk Clock object containing the function to be executed.

time Time delay from the current time when the Clock will be executed.

setclock_fdelay is the floating-point equivalent of setclock_delay.

setclock_unset

Use setclock_unset to remove a Clock from a scheduler.

void setclock_unset (Setclock *scheduler, Clock *clk);

scheduler The setclock object that was used to schedule this clock. If 0, the
clock is unscheduled from the internal millisecond scheduler.

clk Clock object to be removed from the scheduler.

This function unschedules the Clock clk in the list of Clocks in the setclock object,
or the internal millisecond scheduler if scheduler is 0.

setclock_gettime

Use setclock_gettime to find out the current time value of a setclock object.

long setclock_gettime (Setclock *scheduler);

scheduler A setclock object.

Returns the current time value of the setclock object scheduler. If scheduler is 0,
setclock_gettime is equivalent to the function gettime that returns the current
value of the internal millisecond clock.

setclock_getftime

Use setclock_getftime to find out the current time value of a setclock object in
floating-point milliseconds.

void setclock_getftime(Setclock *scheduler, double *time);

Advanced Facilities 107

scheduler A setclock object.

time The current time in milliseconds.

setclock_getftime is the floating-point equivalent of setclock_gettime.

Using the setclock Object Routines

Here’s an example implementation of the relevant methods of a metronome object
using the Setclock routines.

typedef struct metro
{

t_object m_ob;
long m_interval;
long m_running;
void *m_clock;
t_symbol *m_setclock;

} t_metro;

Here’s the implementation of the routines for turning the metronome on and off.
Assume that in the instance creation function, the t_symbol m_setclock has been
set to the empty symbol (gensym("")) and m_clock has been created; the clock
function metro_tick is defined further on.

void metro_bang(Metro *x) /* turn metronome on */
{

x->m_running = 1;
setclock_delay(x->m_setclock->s_thing,x->m_clock,0);

}

void metro_stop(Metro *x)
{

x->m_running = 0;
setclock_unset(x->m_setclock->s_thing,x->m_clock);

}

Here is the implementation of the clock function metro_tick that runs periodically.

void metro_tick(Metro *x)
{

outlet_bang(x->m_ob.o_outlet);
if (x->m_running)

setclock_delay(x->m_setclock->s_thing,x->m_clock,
x->m_interval);

}

Finally, here is an implementation of the method to respond to the clock message.
Note that the function tries to verify that a non-zero value bound to the t_symbol
passed as an argument is in fact an instance of setclock by checking to see if it
responds to the unset message. If not, the metronome refuses to assign the t_symbol
to its internal m_setclock field.

Advanced Facilities 108

void metro_clock(Metro *x, t_symbol *s)
{

void *old = x->m_setclock->s_thing;
void *c = 0;

/* the line below can be restated as:
if s is the empty symbol
or s->s_thing is zero
or s->s_thing is non-zero and a setclock object

*/
if ((s == gensym("")) || ((c = s->s_thing) && zgetfn(c,&s_unset)))
{

if (old)
setclock_unset(old,x->m_clock);

x->m_setclock = s;
if (x->m_running)

setclock_delay(c,x->m_clock,0L);
}

}

Creating Schedulers
If you want to schedule events independently of the time of the global Max
scheduler, you can create your own scheduler with scheduler_new. By calling
scheduler_set with the newly created scheduler, calls to clock_new will create
Clocks tied to your scheduler instead of Max’s global one. You can then control the
time of the scheduler (using scheduler_settime) as well as when it executes clock
functions (using scheduler_run). This is a more general facility than the setclock
object routines, but unlike using the time from a setclock object to determine when a
Clock function runs, once a Clock is tied to a scheduler, it CreatingCreatingCreating.
By calling scheduler_set with the newly created scheduler, calls to clock_new will
create Clocks tied to your scheduler instead of Max’s global one. You can then
control the time of the scheduler (using scheduler_settime) as well

scheduler_new

Use scheduler_new to create a new local scheduler.

Void *scheduler_new(void);

This call returns a pointer to the newly created scheduler.

scheduler_set

Use scheduler_set to make as when it executes clock functions (using
scheduler_run).

void *scheduler_set(t_scheduler *scheduler);

scheduler The scheduler to make current.

Advanced Facilities 109

Make a scheduler current, so that future related calls (such as clock_delay) will
affect the appropriate scheduler. This routine returns a pointer to the previously
current scheduler, which should be saved and restored when local scheduling is
complete.

scheduler_run

Use scheduler_run to run scheduler events to a selected time.

void scheduler_run(t_scheduler *scheduler, double until);

scheduler The scheduler to advance.

until The ending time for this run (in milliseconds).

scheduler_settime

Use scheduler_settime to set the current time of the scheduler.

void scheduler_settime(t_scheduler *scheduler, double time);

scheduler The scheduler to set.

time The new current time for the selected scheduler (in milliseconds).

scheduler_gettime

Use scheduler_gettime to retrieve the current time of the selected scheduler.

void scheduler_gettime(t_scheduler *scheduler, double *time);

scheduler The scheduler to query.

time The current time of the selected scheduler.

Operating System Access Routines
When creating external objects, you may need to have access to operating system
functions and data elements. The operating system access routines provide a Max-
safe method for access to this information.

event_process

Use event_process to send events to the operating system for processing.

void event_process(void *event, t_wind *win);

Advanced Facilities 110

event An event structure (EventRecord on Mac OS) to be processed.

win The window context in which to process the record.

You might use event_process when implementing a filter proc for a dialog box;
Max can handle the event and do things such as redraw windows if your dialog box
moves.

event_run

Use event_run to run Max’s global event loop.

void event_run(void);

Objects With Windows 111

Max allows external objects to create their own windows and handle Macintosh
events. Generally, these tools simplify the task of writing a user interface and they’re
a bit simpler to manage than writing user interface objects that exist within Patcher
windows.

If your window will be an “editor” for the data in a Max object, you should open it
when your object receives a dblclick message (Max doesn’t send normal objects a
single click message).

Your object will be able to respond to window messages because Max will install a
reference to it inside each Macintosh window record. When Max detects a Macintosh
event in the window, it sends the appropriate message to the object that “owns” the
window.

There are two things you’ll need to know in order to work with windows in Max.

• A set of Max functions you’ll use to allow your window to exist within the Max
world.

• A set of special window messages your object will be sent while its window is
open. You write methods to respond to these messages perform actions like
drawing the contents of the window or handling a mouse click. At initialization
time, use addmess to install these methods in your class. All of the window
methods should use the special argument list…

A_CANT, 0

…that specifies that Max can’t and shouldn’t type check the arguments of the
message (because they’re not passed as type-checkable t_atoms).

Note that window messages will never be sent to your object at interrupt level.

The basic window structure is called a t_wind. You’ll create one of these in your
creation function (or whenever you want a window to open) by calling wind_new.
The t_wind structure definition and the flags to pass to wind_new are declared in
the include file ext_wind.h. After the window is created and made visible, it will cause
messages to be sent to its owning Max object.

The messages sent by the window system are listed on the following pages. In each
case, you should frame any action inside calls to set the current GrafPort to your
window using wind_setport. The example below assumes a pointer to the
t_windpub returned from calling wind_new is stored in the object’s m_wind field.

C H A P T E R 10

Objects With Windows

Objects With Windows 112

GrafPtr sp;

if (sp = wind_setport(myobject->m_wind)) {

/* draw something here */

SetPort(sp);
}

Note that you can’t call SetPort directly on the t_wind pointer—it doesn’t point to a
Macintosh GrafPort. Instead, you use wind_syswind to retreview the OS-specific
window structure. The t_wind pointer is stored in the refCon field of a Macintosh
WindowRecord.

Window Messages
The following messages are available for implementing a window for a Max object.
They are presented (somewhat) in order of importance.

click

The click message is sent when a mouse-down event occurs in your window.

BINDING

addmess (myobject_click, "click", A_CANT, 0);

DECLARATION

void myobject_click (t_myobject *x, Point pt, short dblClick,
short modifiers);

pt Location of the mouse click in local coordinates.

dblClick Non-zero if this is a double-click, zero otherwise.

modifiers The modifers field of the Mac OS EventRecord returned by
GetNextEvent for this mouse down event, indicating whether the
shift, option, command, caps lock, or control keys were pressed.

Your click method should handle a mouse down event at the specified location. The
function wind_defaultscroll helps your object handle events involving scroll
bars, and wind_drag should be used to follow the dragging action of the mouse.
These two functions are described below.

update

The update message is sent when your window should be redrawn.

BINDING

addmess (myobject_update, "update", A_CANT, 0);

Objects With Windows 113

DECLARATION

void myobject_update (t_myobject *x);

This message indicates that you need to respond to an update event by drawing the
contents of your window. Note that Max takes care of drawing the scroll bars (Max
will call DrawControls on your window) and grow icon of your window if it
contains those items. Also, the affected area of the window will have been erased for
you.

key

The key message is sent when the user presses a key and your window is frontmost.

BINDING

addmess (myobject_key, "key", A_CANT, 0);

DECLARATION

void myobject_key (t_myobject *x, short key, short modifiers
short keycode);

key The ASCII code of the key pressed.

modifiers The modifers field of the EventRecord returned by GetNextEvent
for this key event, indicating whether the shift, option, command,
caps lock, or control keys were pressed.

keycode The Macintosh key code of the key pressed.

This message allows you to respond to key down or auto-key event.

idle

The idle message allows you to adjust the cursor or display of your window to reflect
the current location of the mouse.

BINDING

addmess (myobject_idle, "idle", A_CANT, 0);

DECLARATION

void myobject_idle (t_myobject *x, Point mouseLoc, short
within);

mouseLoc Current location of the mouse in local coordinates.

within Zero if your window is active but the cursor is not over it. Do not
change the cursor unless within is non-zero.

Your idle method is called repeatedly while your window is the active window, or,
when the user has chosen All Windows Active from the Options menu and the
cursor happens to be over your window. The location of the mouse is passed in local

Objects With Windows 114

coordinates in mouseLoc, so you won’t have to call GetMouse to find it. Typically,
windows will use the idle method to adjust the cursor when it falls over specific
locations, such as TextEdit fields. You can set the cursor with wind_setcursor.

The Patcher also uses its idle method to call TEIdle if text is being edited inside its
window, and to highlight inlets and outlets if the mouse is over them. Note that your
idle function is also called during the time the mouse is down and you’ve called
wind_drag.

activate

The activate message allows you to change the appearance of your window when it
becomes the frontmost window, or when it is no longer the frontmost window.

BINDING

addmess (myobject_activate, "activate", A_CANT, 0);

DECLARATION

void myobject_activate (t_myobject *x, short active);

active Non-zero if the window is becoming active, zero if it is being
deactivated.

Typically you’ll respond to an activate event by highlighting or unhighlighting
something that’s selected, according to the value of active. Max takes care of enabling
and disabling scroll bars.

close

The close message is sent when your window should be closed.

BINDING

addmess (myobject_close, "close", A_CANT, 0);

DECLARATION

void myobject_close (t_myobject *x);

This message is sent to your object when the user wants to close your window. It’s
suggested that you write your object so that closing the window will not destroy
your object’s data, so the user can close the window without worrying about losing
anything. If you plan on creating another window with wind_new at a later time,
dispose of the window’s memory by calling freeobject (which will perform a
CloseWindow). Otherwise, you should use syswindow_hide on the Mac OS window
pointer as follows:

syswindow_hide(wind_syswind(myobject->m_wind)));

Objects With Windows 115

Max just tells you that the user wants to close your window. You can respond in any
manner you like, although if you leave the window open, the user may experience
problems when quitting.

scroll

The scroll message is sent when a scroll bar is moved and your window’s contents
should scroll.

BINDING

addmess (myobject_scroll, "scroll", A_CANT, 0);

DECLARATION

void myobject_scroll (myObject *x);

Max calls this routine when the user is moving a scroll bar. You should check the
w_xoffset (horizontal) and w_yoffset (vertical) fields of your t_wind, compare
against your stored previous values, and scroll the window accordingly.

vis and invis

The vis message is sent when your window has just become visible. The invis message
is sent when your window is just about to become invisible.

BINDING

addmess (myobject_vis, "vis", A_CANT, 0);

addmess (myobject_invis, "invis", A_CANT, 0);

DECLARATION

void myobject_vis (t_myobject *x);
void myobject_invis (t_myobject *x);

oksize

You can perform any appropriate action in response to these messages, such as
initializing the window’s user interface when receiving the vis message.

The oksize message is sent to confirm a new size for your window.

BINDING

addmess (myobject_oksize, "oksize", A_CANT, 0);

DECLARATION

void myObject_oksize (t_myobject *x, short *hsize, short
*vsize);

Objects With Windows 116

hsize The proposed horizontal size of the window. If you wish to modify
the horizontal size, return a new value in hsize, otherwise leave it
unchanged.

vsize The proposed vertical size of the window. If you wish to modify the
vertical size, return a new value in vsize, otherwise leave it
unchanged.

You can implement an oksize method for your window that will allow you to check
and possibly adjust the size of a window before it is actually resized (see the wsize
message below). The proposed size is passed in hSize and vSize. You can set these
values to whatever you like. You might use the oksize message if your window
contains “cells” and you want the size of the window to be an exact multiple of the
number of cells. Obviously, the oksize message is sent before the wsize message
described below.

wsize

The wsize message is sent when your window has changed size.

BINDING

addmess (myobject_wsize, "wsize", A_CANT, 0);

DECLARATION

void myObject_wsize (t_myobject *x, short hsize, short vsize);

hsize The new horizontal size of the window.

vsize The new vertical size of the window.

If the user resizes a window, you’ll be informed via the wsize message. The new
dimensions of the window are passed in hSize and vSize. If your window has
scroll bars, you will need to move, resize, redraw them here.

otclick

The otclick message is sent when a user option-clicks on the title bar of your window.

BINDING

addmess (myobject_otclick, "otclick", A_CANT, 0);

DECLARATION

void myObject_otclick (MyObject *x);

otclick stands for Option-Title-Click. As an example of an object that implements this
method, the Patcher window has a pop-up menu that allows you to return to the
parent window of a subpatch window. If you don’t implement an otclick method, the
user will get the normal dragging action that they’d expect when option-clicking on a
title bar.

Objects With Windows 117

mouseup

The mouseup message is sent when there is a mouse up event in your window.

BINDING

addmess (myobject_mouseup, "mouseup", A_CANT, 0);

DECLARATION

void myobject_mouseup (t_myobject *x, Point where,
short modifiers);

where The location of the mouse up event in local coordinates.

modifiers The modifers field of the EventRecord returned by GetNextEvent
for this mouse up event, indicating whether the shift, option,
command, caps lock, or control keys were pressed.

Menu Messages
These messages are sent to your window when the user chooses an item from a
menu and your window is the active window.

chkmenu

The chkmenu message is sent immediately before the menus are drawn when there has
been an event that will cause them to be drawn or used.

The chkmenu message is sent in order to allow you to specify standard menu items
you would like enabled or disabled.

BINDING

addmess (myobject_chkmenu, "chkmenu", A_CANT, 0);

DECLARATION

void myobject_chkmenu (t_myobject *x, t_menuinfo *mi);

mi A t_menuinfo structure that you will fill in with those items that
should be enabled. All items are disabled by default. See below for a
description of this structure.

When your window becomes the active window, Max will update its menus based
on those items your window could respond to. You are passed a pointer to a
Menuinfo structure initialized to all zero values. If you wish to be sent a message
when the user chooses a particular menu item, set the corresponding item in the
Menuinfo structure to 1, and the item will be enabled. The Menuinfo structure is an
array of short integers and is declared in ext_menu.h. Here are the menu commands
available to you:

Field Message Commands

Objects With Windows 118

i_cut cut, copy, clr Cut, Copy, and Clear – Edit menu
i_paste paste Paste – Edit menu
i_dup dup Duplicate – Edit menu
i_save saveto Save and Save As… – File menu
i_pastepic pastepic Paste Picture – Edit menu
i_edit edit Edit – View menu
i_range dialog Get Info… – Object menu
i_lineup lineup Align – Max menu
i_fixwidth fixwidth Fix Width – Object menu
i_size font A Size in the Font menu
i_hide hide Hide on Lock – Object menu
i_show show Show on Lock – Object menu
i_selectall selectall Select All – Edit menu
i_find find Find… – Edit menu
i_findagain find Find Again – Edit menu
i_replace find Replace – Edit menu
i_print print Print… – File menu
i_font font A Font in the Font menu
i_color wcolor Color… – Object menu
i_savecoll savecoll Save As Collective… – File menu
i_noclick noclick Ignore Click – Object menu
i_respond respondtoclick Respond to Click – Object menu
i_front bfront Bring to Front – Object menu
i_back back Send to Back – Object menu
i_lockbg lockbg Lock Background – View menu
i_showbg showbg Show Background – View menu
i_includebg includebg Include in Background – Object menu
i_excludebg excludebg Remove from Background – Object menu
i_coloritem N/A current color item – Object menu
i_setorigin setorigin Set Origin – View menu
i_restoreorigin restoreorigin Restore Origin – View menu
i_name wobjectname Name… – Object menu
i_showconnections showconnections Show/Hide Connections – View menu
i_showpal showpalette Show/Hide Object Palette – View menu
i_pastereplace pastereplace Paste Replace – Edit menu

Of the menu messages listed above, only the saveto, font, savecoll, showconnections,
showpalette, and find messages contain additional arguments beyond the normal pointer
to your object. These messages are detailed below along with those menu messages
that deserve additional remarks.

undo

The undo message is sent when the user chooses Undo from the Edit menu.

BINDING

addmess (myobject_undo, "undo", A_CANT, 0);

Objects With Windows 119

DECLARATION

void myobject_undo (t_myobject *x);

In order to receive this message, you need to explicitly enable and set the text of the
Undo menu item, which you can do by responding to the undoitem message discussed
below. It’s your responsibility to keep track, when your object receives this message,
if you should perform an undo or a redo – but this shouldn’t be hard, since you set
the text of the menu item yourself. If you don’t implement an undoitem method, the
Undo menu item will always be disabled when your window is the active window.

undoitem

The undoitem message allows you to enable the Undo item in the Edit menu and set its
text.

BINDING

addmess (myobject_undoitem, "undoitem", A_CANT, 0);

DECLARATION

void myobject_undoitem (t_myobject *x, char *text);

text C string that you set to contain the text of the Undo item in the Edit
menu. Set the string to be empty (text[0] = 0) to disable the
Undo item. In that case, the text will be Undo.

pastepic

The pastepic message is sent when the user chooses Paste Picture from the Edit menu.

BINDING

addmess (myobject_pastepic, "pastepic", A_CANT, 0);

DECLARATION

void myobject_pastepic (t_myobject *x);

The picture data is still on the clipboard, and it’s your responsibility to copy the data
(using Mac OS routine GetScrap) and do something with it.

saveto

The saveto message is sent when the user chooses Save or Save As… from the File
menu.

BINDING

addmess (myobject_saveto, "saveto", A_CANT, 0);

Objects With Windows 120

DECLARATION

void myobject_saveto (t_myobject *x, char *filename,
short path);

filename C string containing the name of the file to write your data into. It
may need to be created.

path PathID specifying the location of the file.

If the user chooses Save As… from the File menu when your window is the active
window, you will receive this message after the user has specified a file name and
volume in a standard save file dialog box. The file has been neither opened nor
created. You should create, open, write out, and close the file. You might also want to
change the title of the window using wind_settitle, although this is done
automatically unless you set the WKEEPT bit in the flags argument passed to
wind_new.

If the user chooses Save from the File menu, the filename and volume are already
known to Max, and your saveto method will be called.

You’re not required to implement this method if there is nothing worth saving in
your window. In this case, don’t enable the saveto message in your chkmenu method.

dialog

The dialog message is sent when the user chooses Get Info… from the Max menu.

BINDING

addmess (myobject_dialog, "dialog", A_CANT, 0);

DECLARATION

void myobject_dialog (t_myobject *x);

The dialog method is used in the Patcher window to send the info message to any
selected Patcher objects. Your object can respond to the info message, as we’ve
mentioned above, usually by putting up a dialog box to set some internal values.

The dialog message will be sent to you when your window is the active window and
the user chooses Get Info… from the Max menu. Your method might put up the
same dialog box as your object’s info method. Or if your window contains selectable
items, the dialog might depend on what’s selected.

font

The font message is sent when the user chooses a new font or font size from the Font
menu.

BINDING

addmess (myobject_font, "font", A_CANT, 0);

Objects With Windows 121

DECLARATION

void myobject_font (myObject *x, short size, short fontnum);

size The new font size if it has been changed, otherwise -1.

fontnum The number of the new font if one has been chosen from the menu,
otherwise -1.

Your object will receive this message after the user has changed the window’s default
font or font size by choosing from the Size menu. You can determine the current size
by checking the w_fontsize field of your t_wind. The default font is stored in the
w_realfont field. To get the font and size information directly from the font
message, your method should be declared as shown above. If either fontnum or
size is -1, its value has not been changed by the user and you should not change
this aspect of the selected or unselected text in your window.

When responding to the chkmenu message, you can specify that a particular font or
size be checked when the Font menu is displayed by setting the values of i_font
and i_size to the current values used in your window.

help

The help message is sent when the user chooses Help… from the Max menu.

BINDING

addmess (myobject_help, "help", A_CANT, 0);

DECLARATION

void myobject_help (t_myobject *x);

Your help method can respond by opening a help file or any other helpful action.

find

The find message is sent when the user is using the Find Dialog.

BINDING

addmess (myobject_find, "find", A_CANT, 0);

DECLARATION

void myobject_find (myObject *x, void *search, void *replace);

search A Binbuf specifying what to search for in your window. If search
is 0L, you should only replace.

replace A Binbuf specifying the replacement for the current selection in
your window. If replace is 0, you should only perform a search.

This message will be sent to your window after the user has clicked Find in the Find

Objects With Windows 122

Dialog with your window active, or chosen Find Again or Replace from the Edit
menu. If you “find” something, you should probably enable the Find Again… item
the next time you receive a chkmenu message.

If both search and replace are non-zero, first replace what’s selected in your
window, then search again. If you want to change search or replace to text, use
binbuf_totext.

okclose

The okclose message is sent before a standard “Save changes before closing?” alert is
displayed.

BINDING

addmess (myobject_okclose, "okclose", A_CANT, 0);

DECLARATION

void myobject_okclose (t_myobject *x, char *prompt,
short *result);

prompt Modify this C string to contain the text of the “Save changes?” alert
if you want to modify its standard appearance.

result A code from 0 to 4 as described below indicating the action that
should be taken in closing the window.

Implementing this message allows your object to override the default behavior of
putting up this alert when the window’s w_dirty field is non-zero. You can, for
example, change the text of the alert by modifying prompt. Or you can return certain
values in result that will cause the alert to be skipped or for the window not to be
closed at all (unless it is being closed because its owning object is being freed). These
latter actions would be appropriate if you want to put up your own Save Changes
alert. The allowable values for result are:

0 Take normal action (display alert if w_dirty is non-zero, otherwise close the
window)

1 Same as 0 except that Max is informed that dialogString has been changed.

2 Don’t put up an alert and clear w_dirty (used when custom alert has resulted in
a save).

3 Don’t put up an alert, leave w_dirty unchanged.

4 Act as if the user cancelled (useful when the user cancels out of a custom alert).

print

The print message is sent after the user chooses Print… from the File menu and the
standard print dialog has been displayed.

Objects With Windows 123

BINDING

addmess (myobject_print, "print", A_CANT, 0);

DECLARATION

void myobject_print (t_myobject *x, THPrint hPrint,
GrafPtr yourPort, short *result);

hPrint A standard Mac OS THPrint as described in Inside Macintosh.

yourPort Your window’s GrafPort. You won’t draw in this port when
printing, but it may be convenient to access port information such
as the port rectangle.

result Set this to a non-zero value if you encounter an error while printing.
It’s set to zero when your method is called.

This message is sent to your window when the user has chosen Print… from the File
menu, seen the standard printing dialog and clicked OK. You will receive a print
message for every copy of the document the user wants to print.

In this method, you print your window as through it were a “document.” If there’s
an error, set result to a non-zero value.

Here is an outline of some simple code that would print out a window on a single
page without worrying if the window is too big for the size of the paper. Note the
calls to the Printing Manager that are required before and after drawing a page.

void myobject_print (myObject *x, THPrint hp, GrafPtr port,
short *res)

{
TPPrPort printPort;
Rect printRect;

printPort = PrOpenDoc(hp,0L,0L);
SetPort(printPort);
TextFont(port->txFont);
TextSize(port->txSize);
printRect = (**hp).prInfo.rPage;
PrOpenPage(printPort,0L);

/* print window here */

PrClosePage(printPort);
PrCloseDoc(printPort);
*res = 0;

}

You may want to be nice and add code that checks for command-period being typed.
In this case, result should be set to a non-zero value, so that additional copies of
the document are not printed.

Objects With Windows 124

Window Routines
The following functions are for use in conjunction with your object’s window. Here is
the t_wind structure used by most of these routines.

typedef struct wind
{

t object w_ob; // object header
short w_x1; // location of window
short w_x2;
short w_y1;
short w_y2;
short w_xoffset; // scroll offsets
short w_yoffset;
short w_scrollgrain; // scroll grain in pixels
short w_refcount; // reference count
char w_vis; // visible
char w_titled; // has a title
char w_grow; // has a grow region
char w_close; // has a close region
char w_scrollx; // has an x scroll region
char w_scrolly; // has a y scroll region
char w_dirty; // dirty flag (can save)
char w_scratch; // no complain on

close
char w_bin; // binary save
char w_font; // text font
char w_fsize; // font size
char w_fontindex; // old font index field (unused)
WindowRecord w_wind; // Mac OS window data (not always

// present, need to check w_local)
short w_vsmax; // vertical scroll max
ControlHandle w_vscroll; // vertical scroll bar
short w_hsmax; // horizontal scroll max
ControlHandle w_hscroll; // horizontal scroll bar
void *w_assoc; // associated object
void *(*(w_idle))(); // window idle function (unused)
char w_name[80]; // filename = window title
short w_vol; // Path ID file location
short w_proc; // window proc id (0 = normal)
char w_keeptitle; // set window title on saveas
char w_canon; // slot in canonical list of

locations
char w_silentgrow; // don't draw grow icon but allow

 grow
char w_color; // try to make color window if you

can
char w_bits; // number of bits (i.e. 2 for

b&w)
char w_divscrollx; // divided horiz scroll bar
char w_zoom; // has zoom rect
short w_realfont; // real font index
short w_hsleft; // left of scroll bar
Rect w_oldsize; // internal use
short w_oldproc; // internal use
char w_select; // always select on click
char w_frame; // internal use

Objects With Windows 125

long w_flags; // internal use
WindowPtr w_wptr; // contains pre-existing window or ptr

// to w_wind
long w_local; // is OS window stored in w_wind?
Rect w_growbounds; // optional grow bounds for a window
char w_helper; // is part of Extras menu

} t_wind;

wind_new

Use wind_new to make a new window.

t_wind *wind_new (void *assoc, short left, short top,
short right, short bottom, short flags);

assoc Owning object. This will usually be a pointer to your object.
However, if you want your object to have multiple windows, you
may wish to create intermediary objects that receive the window
messages so you can distinguish which window they’re for.

left Left global coordinate of the window. If both left and top are 0,
the window is placed in an ordered “canonical” location relative to
other windows.

top Top global coordinate of the window.

bottom Bottom global coordinate of the window.

right Right global coordinate of the window.

flags A bitmap of constants determining the window’s behavior and
appearance from the list below.

#define WVIS 1 window will be visible

#define WGROW 2 has a Grow region

#define WSCROLLX 4 horizontal scrollbar

#define WSCROLLY 8 vertical scrollbar

#define WCLOSE 16 has a close box

#define WKEEPT 32 don’t change window title after saving

#define WSGROW 64 invisible grow region

#define WCOLOR 128 color window

#define WPATCHPROC 256 patcher window defproc with extra title
gadgets

#define WSHADOWPROC 512 window plain box procID used in new object
list window

#define WDIVSCROLLX 1024 divided horizontal scroll bar (min 140 pixels)

#define WZOOM 2048 has a zoom box

#define WSELECT 4096 always select on click (disobey All Windows
Active)

Objects With Windows 126

#define WFROZEN 8192 prevent patcher control over this window

#define WFLOATING 16384 create a floating window

wind_new returns a new t_wind object. The actual Mac OS window will not be
created unless the visible flag WVIS is set.

wind_vis

Use wind_vis to make a window visible or bring it to the front.

void wind_vis (t_wind *window);

window Window to make visible.

wind_vis makes a window visible. If it’s already visible, wind_vis calls
SelectWindow to make the window the active window. If you want to make a Mac
OS window visible, use syswindow_show.

wind_invis

Use wind_invis to make a window invisible.

void wind_invis (t_wind *window);

window Window to make invisible.

wind_invis hides the window if it’s visible. If the window isn’t visible,
wind_invis does nothing. If you want to defeat the system and keep your window
alive but invisible, use syswindow_hide instead. Note that wind_invis does not
actually get rid of the memory occupied by the Wind structure. After using
wind_invis, call wind_vis to create another Mac OS window.

wind_setgrowbounds

Use wind_setgrowbounds to limit the minimum and maximum bounds of the
selected window.

void wind_setgrowbounds(t_wind *window, short minx, short
miny, short maxx, short maxy);

window Window to set bounds.

minx The minimum width of the window.

miny The minimum height of the window.

maxx The maximum width of the window.

maxy The maximum height of the window.

Objects With Windows 127

wind_defaultscroll

Use wind_defaultscroll to see if a mouse click was on a scrollbar, and if so,
handle it in the default manner.

void wind_defaultscroll (t_wind *window, Point pt,
short pagesize);

window Window in which the mouse was clicked.

pt Location of the mouse click in local coordinates, passed to your click
method.

pagesize Value to increment or decrement the scroll bar when the user pages
a scroll bar up or down. Paging is clicking on the dotted part of the
bar outside the thumb. If you pass 0 for pageSize, the default
paging routine is used, which goes to the maximum or minimum of
the scroll bar’s value when the user clicks in the dotted area of the
bar.

If your window has scroll bars, call wind_defaultscroll in your click method. It
will check if pt lies within a scroll bar. If so, wind_defaultscroll executes the
default scroll bar routine and returns 1. If not, wind_defaultscroll returns 0.

wind_dirty

Use wind_dirty to mark a window as having unsaved data.

void wind_dirty (t_wind *window);

window Window to dirty.

wind_dirty sets the window’s dirty bit, so the user will be asked to save changes if
the window is closed. Your saveto method will be called if the user wants to save the
changes.

wind_drag

Use wind_drag to track mouse dragging in a window.

void wind_drag (method dragfun, void *arg, Point start);

dragfun Procedure that will handle tracking the cursor and the mouse
button. See below for its definition.

arg Argument passed to the drag procedure. Normally this is your
object.

start The starting location of the drag. This is usually the Point you
receive as an argument to your click method.

Objects With Windows 128

Use of wind_drag replaces a typical program’s loop that usually looks like:

do {
GetMouse(&pt);
/* do something here to track the mouse*/

} while (StillDown());

You pass a pointer to a function (dragfun) you want called every time the mouse
moves. It will call dragfun with the specified argument arg, the location of the
mouse, and whether the mouse button is down. When the mouse button goes up,
your drag function is called one last time. Your drag function should be declared as
follows:

void myobject_drag (void *dragarg, Point pt, short button);

dragarg Argument passed to wind_drag. Usually it will be a pointer to your
object.

pt Current cursor location in local coordinates.

button Non-zero if the mouse button is down, zero otherwise.

As mentioned above, wind_drag will normally only call your drag function when
the mouse moves. If you want your drag function to be called even if the mouse
hasn’t moved, call wind_noworrymove before calling wind_drag. The dragroutine
will be called one final time when the mouse button is released (and button will be
zero). Your drag routine should use wind_setport (see below) to ensure that
drawing takes place in the correct GrafPort.

wind_inhscroll

Use wind_inhscroll to test whether a Point lies within a horizontal scroll bar of a
window.

short wind_inhscroll (t_wind *window, Point pt);

window Window containing the scroll bar(s) to test.

pt Mouse click location.

wind_inhscroll returns true if pt lies within the horizontal scroll bar and false if
it doesn’t. This can be used to distinguish a click in the horizontal scrollbar from one
in the vertical scrollbar for the purpose of passing a different pagesize argument to
wind_defaultscroll.

wind_noworrymove

Use wind_noworrymove to set the next invocation of wind_drag to call your drag
function even if the cursor hasn’t changed.

Objects With Windows 129

void wind_noworrymove (void);

See wind_drag for more information.

wind_setcursor

Use wind_setcursor to change the cursor.

void wind_setcursor (short curs);

curs One of the following predefined cursors:

#define C_ARROW 1
#define C_WATCH 2
#define C_IBEAM 3
#define C_HAND 4
#define C_CROSS 5
#define C_PENCIL 6
#define C_GROW 8

wind_setcursor keeps track of what the cursor was previously set to, so if
something else has changed the cursor, you may not see a new cursor if you set it to
the previous argument to wind_setcursor. The solution is to call
wind_setcursor(0) before calling it with the desired cursor constant. Use
wind_setcursor(-1) to tell Max you’ll set the cursor to your own cursor directly.

wind_setport

Use wind_setport to set the current GrafPort to a window.

GrafPtr wind_setport (t_wind *window);

window Window to be made the current GrafPort.

A convenience function that sets the current GrafPort to the port associated with a
window. A pointer to the previous GrafPort is returned by the function if successful,
otherwise, wind_setport returns NIL. You should call this function before
drawing or handling events in a window, and call SetPort on the result when you’re
through. Here’s an example.

GrafPtr sp;

if (sp = wind_setport(myWind)) {
/* draw things here */
SetPort(sp);

}

Objects With Windows 130

wind_syswind

Use wind_syswind to retrieve an OS-specific window structure from a t_wind.

WindowPtr wind_syswind(t_wind *window);

window Window to query.

Returns an OS-specific window structure associated with the t_wind.

wind_setsmax

Use wind_setsmax to set the maximum values of a window’s scrollbars.

void wind_setsmax (t_wind *window, short hmax, short vmax);

window Window containing the scroll bars.

hmax New maximum for the horizontal scroll bar.

vmax New maximum for the vertical scroll bar.

The minimum values of the scroll bars are always 0. This function can be used
whether or not the window is visible.

wind_setsval

Use wind_setsval to set the values of a window’s scroll bars.

void wind_setsval (t_wind *window, short hval, short vval);

window Window containing the scroll bars.

hval New value for the horizontal scroll bar.

vval New value for the vertical scroll bar.

This function can be used whether or not the window is visible.

wind_settitle

Use wind_settitle to change a window’s title.

void wind_settitle (t_wind *window, char *title,
short brackets);

window Window containing the scroll bars.

title C string containing the new title.

brackets If non-zero, the title will appear within square brackets.

Objects With Windows 131

This function can be used whether or not the window is visible.

wind_setundo

Use wind_setundo to set the text of the Undo item in the Edit menu.

void wind_setundo (char *string, short undoable);

string New text of the Undo item (C string).

undoable If non-zero, the Undo item is enabled, otherwise it’s disabled.

wind_filename

Use wind_filename to change title and filename stored with the window.

void wind_filename (t_wind *window, char *filename, short

path,
short bin);

window Window whose filename is to be changed.

filename The new filename (C string).

path The new Path ID specifying the file’s location.

bin The new default setting of the file format. If bin is 0, Text is
selected in the Save As dialog; if bin is 2, Normal is selected. A bin
value of 1 was used for "Old Format" binary files in Max -- this
format is no longer supported. If bin is -1, the choice of file formats
is not presented to the user in the Save As dialog.

This function changes the title of your window and gives it a filename and a volume
that is automatically passed as an argument to the saveto message if the user chooses
Save from the File menu.

Use wind_setbin to change the file format setting of a window.

void wind_setbin (t_wind *queenie, short way);

queenie Window whose file format setting is to be changed.

way The new default setting of the file format. If way is 0, Text is
selected in the Save As dialog; if way is 2, Normal is selected. A bin
value of 1 was used for "Old Format" binary files in Max - this
format is no longer supported. If way is -1, the choice of file formats
is not presented to the user in the Save As dialog.

wind_setbin

Objects With Windows 132

wind_close

Use wind_close to begin the process of closing a window.

short wind_close (t_wind *window);

window Window to be closed.

Normally this function’s actions are performed when the user clicks the close box or
chooses Close from the File menu. wind_close first checks if the window’s data has
been changed. If it has, and the window’s w_scratch field has not been set, the Save
Changes dialog is presented and the desired action is taken. If wind_close returns -
1, it means the user cancelled out of the Save Changes dialog or the file saving dialog
and the window was not closed.

If wind_close returns 0, it means that the window was closed. This happens in
three circumstances. First, when there was no data to save. Second, when the user
specified that changes were to be saved and they were properly saved. Third, when
the user specified that changes were not to be saved.

This function might be used in conjunction with wind_nocancel described below if
you want to ask the user whether to save data in a window owned by your object
when your object’s free function is called.

wind_nocancel

Use wind_nocancel before wind_close to eliminate the possibility of the user
being able to cancel out of a “Save changes?” dialog before a window is closed.

short wind_nocancel (void);

wind_nocancel only affects the “Save changes?” dialog that appears immediately
after it has been called.

syswindow_inlist

Use syswindow_inlist to determine if a OS-specific window structure is owned
by Max.

Boolean syswindow_inlist(WindowPtr wptr);

wptr Window to test.

syswindow_show

Use syswindow_show to show an OS-specific window associated with a t_wind.

void syswindow_show(WindowPtr wptr);

Objects With Windows 133

wptr Window to show.

syswindow_hide

Use syswindow_hide to hide an OS-specific window associated with a t_wind.

void syswindow_hide(WindowPtr wptr);

wptr Window to hide.

Numericals
The Numerical object provides a way to display and edit numbers in your window.
Here are two examples from a window of the detonate object.

The Numerical data structure is declared in ext_numc.h. However, you can access
most of the important fields of a Numerical through functions.

Numerical routines handle the updating of their current value and tracking the
mouse. You supply a routine that gets called when the Numerical’s value is changed,
called the track routine. In addition, you can supply routines that customize how a
Numerical is incremented and how it is drawn. The declaration of these routines is
contained in the description of the relevant functions.

num_new

Use num_new to make a new Numerical.

Numerical *num_new (short top, short left, short bottom,

short right, ProcPtr draw, ProcPtr inc,

long flags, long min, long max, long val,
short font, short fsize);

top Top coordinate of the Numerical in local coordinates.

left Left coordinate of the Numerical in local coordinates.

bottom Bottom coordinate of the Numerical in local coordinates.

right Right coordinate of the Numerical in local coordinates.

Objects With Windows 134

draw Routine that overrides the standard behavior for translating the
Numerical’s value into a string. Pass 0L to use the standard routine.
See below for how to declare this function.

inc Routine that overrides the standard behavior for incrementing the
value of the Numerical. Pass 0L to use the standard routine. See
below for how to declare this function.

flags A bitmap of constants that specify the appearance and behavior of
the Numerical. See the description below.

min Initial minimum value of the Numerical.

max Initial maximum value of the Numerical.

val Initial value of the Numerical.

font Index of the font used for drawing the Numerical. Normally,
geneva is used.

fsize Font size used for drawing the Numerical. Normally, 9 point is
used.

This function creates a new Numerical object and returns the result. The draw
routine should be declared as follows:

void myDrawProc (Numerical *num, long value, char *dest);

num Numerical being drawn.

value The value to display.

dest C string to place the converted value.

The inc routine returns the new value of the Numerical based on the number of
pixels the mouse has moved up or down while the user is scrolling. The routine
should be delcared as follows:

long myIncrementProc (Numerical *num, long value, short dist);

num Numerical being incremented.

value Current value of the Numerical, the basis of the return value of
your function.

dist Number of pixels the mouse has moved. If the mouse has moved up
(normally indicating an increase in the value of the Numerical)
dist will be negative, while if the mouse has moved down, dist
will be positive.

If you write an increment procedure you may wish to check the new value against
the n_min and n_max fields of the Numerical.

The flags argument sets options about the Numerical’s appearance and behavior.

Objects With Windows 135

#define N_HILITE 1 Numerical is highlighted, used internally
#define N_RIGHT 2 Text is right-justified (default is centered)
#define N_LEFT 4 Text is left-justified (default is centered)
#define N_FRAME 8 Draw a frame around the Numerical’s box
#define N_CLIP 16 Not used
#define N_ENDTRACK 32 Call the Track Routine only when the user is

finished scrolling
#define N_BOLD 64 Draw the text in bold

num_draw

Use num_draw to draw a Numerical.

void num_draw (Numerical *num);

num Numerical to draw.

Call num_draw in your window’s update method or any time you want to draw the
Numerical with a new value. num_draw will call your draw routine (it if exists) to set
the character string to be drawn. The current GrafPort must be set to your window
before calling num_draw.

num_hilite

Use num_hilite to change a Numerical’s highlighting.

void num_hilite (Numerical *num, short way);

num Numerical to draw.

way If 1, the Numerical will be inverted (the highlighted state). If 0, the
Numerical will be drawn normally.

Most Numerical applications won’t need to use this routine.

num_test

Use num_test to see if a Numerical has been clicked.

short num_test (Numerical *num, Point pt);

num Numerical to check.

pt Mouse location in local coordinates.

This function non-zero if pt lies within the Numerical’s rectangle. Call it in your
window’s click method. If num_test does return a non-zero value, call num_track.

Objects With Windows 136

num_track

Use num_track to allow the user to scroll a Numerical to change its value.

void num_track (Numerical *num, Point start, ProcPtr track,
void *arg);

num Numerical to track.

start Where the mouse was clicked, in local coordinates.

track Tracking routine for updating the variable that the Numerical
displays as the user scrolls. If you don’t pass a pointer to a function
for track, there’s no way to know the value of the Numerical when
the mouse was released, since num_track returns immediately
after you call it, and uses wind_drag (see above) to track the
mouse during the main event loop. See below for how to declare it.

arg Any value you want passed to your tracking routine. In most cases
this will be a pointer to your object.

This function tracks the mouse and scrolls the value of the Numerical up or down. It
should be called in your window’s click method after num_test has indicated the
user clicked in the Numerical.

The tracking routine be declared as follows:

void myobject_track (myObject *arg, Numerical *num,
long value);

arg The arg parameter passed to num_track. Normally this will be a
pointer to your object.

num The Numerical being tracked.

value The Numerical’s current value. Normally, you assign this value to
some variable inside your object.

If you set the N_ENDTRACK bit in the Numerical’s flags, your track routine will only
be called when the user has finished scrolling the Numerical. This might be a good
idea if the action you take in your track routine takes a long time, and could alter the
“feel” of scrolling the Numerical. In general however, users expect that they can hold
a Numerical down and observe changes taking place in the program, so you should
set N_ENDTRACK only in special cases.

num_setvalue

Use num_setvalue to change the value of a Numerical.

void num_setvalue (Numerical *num, long value, short redraw);

num Numerical to be changed.

Objects With Windows 137

value New value.

redraw If non-zero, the Numerical will be redrawn, otherwise it won’t.

This function sets the Numerical to a new value. Make sure you’ve set the current
GrafPort to your window if you redraw a Numerical.

Writing User Interface Objects 138

Thus far, we’ve talked only about writing normal external objects, ones that show up
in boxes with two lines at the top and bottom.

Now you’ll learn the secrets to writing external objects that have a custom
appearance and behavior in a Patcher window.

The normal object is just one of several objects you have to choose from in the
Patcher window’s palette. Others include buttons…

…sliders…

… and number boxes.

These objects have inlets and outlets just like normal objects, but they present a
friendlier face to the world. Make sure before writing a custom user interface object
that your task might not be better suited to a normal object that creates its own
window. Your user interface object should enhance what a user can do within a
Patcher window.

The Box
Patcher windows are made up of a collection of t_box structures.

A t_box structure contains the user interface object’s enclosing rectangle and a
bunch of flags that determine the object’s appearance and behavior. When you create
a structure for your user interface object, a Box must be the first thing contained
within it. Not a pointer to a t_box—the t_box structure itself. This structure replaces
the t_object that normally begins an external object structure definition. t_box
and other useful user interface data types and constants are defined in the Max
include file ext_user.h.

Here’s an example user interface object structure definition. We’ll be using this
example throughout our explanation of the various routines that help your write
user-interface objects.

typedef struct myuserobject {
t_box my_box;

C H A P T E R 11

Writing User Interface Objects

Writing User Interface Objects 139

long my_data1;
long my_data2;
void *my_qelem;

} t_myuserobject;

Using this technique, the patcher window is able to treat your user interface object as
a t_box, even though it contains additional fields, while Max can treat it as an
t_object.

The SICN

How do you tell Max that your object is a user interface object? You include a SICN
resource in the file that contains your shared library. In CodeWarrior, a resource file
can be added to your project if its file type is rsrc. In the MPW environment, a
resource file (of type rsrc) is run through DeRez to create a text-based resource (.r)
file, then rebuild using Rez.

The SICN resource should be an icon of the object’s appearance. Take a cue from the
size and style of the existing Max object icons (look at the SICN resources in the Max
application file in ResEdit) when designing yours. Give the SICN the same resource
ID number as the mAxL resource with which it’s associated.

In addition, you should name the SICN resource with a brief description of your
object, for example, “Horizontal Slider.” This description will show up in the
Assistance portion of the Patcher window when the user clicks on your SICN in the
Patcher palette.

User Interface Object Creation Functions
Remember the menufun argument to the setup function, called at initialization
time? menufun is a function that will be called if the user chooses your user interface
object from the Patcher window palette. It should create a “default” object in size and
appearance, and return a pointer to your newly created object. It is declared as
follows:

void *myuserobject_menu (t_patcher *p, long left, long top,
long font);

p The patcher your object is in.

left Left coordinate where the object should be created.

top Top coordinate where the object should be used.

font Current window’s default font size in the lower 16 bits, and the
current default font index in the upper 16 bits. You need only use
this information if your object displays text.

User interface objects create two instance creation routines. One, declared above, is
called to make a default object and the other is called when an instance of your object
is created when a patcher file is being read in. The exact format of the second

Writing User Interface Objects 140

instance creation routine is somewhat up to you, since your object will respond to the
psave message to write out its state and location within a Patcher. Before discussing
the psave method, here is how you declare your file-based instance creation routine.

void *myuserobject_new (t_symbol *sym, short argc, t_atom

*argv);

sym The name of your object.

argc Count of t_atoms in argv.

argv Array of t_atoms that describe your object (coordinates, etc.).

The first t_atom in the argv array points to the Patcher your object is in. You’ll need
this information in order to initialize the t_box structure that is the header for all user
interface objects. Here is what your object should do first in creating your user
interface object instance:

void *myuserobject_new (t_symbol *sym, short argc, t_atom *argv)
{

t_myuserobject *x;
void *p; // your patcher
short left, top, right, bottom;

x = newobject(myuserobject_class);
p = argv->a_w.w_obj; // get patcher out of argv

Having gotten your patcher, you should now look at the additional arguments that
have been passed to your routine. In particular, we recommend that the next few
arguments specify the coordinates of your object’s rectangle within the Patcher. We’ll
show you how to do this in the psave method in a moment, but let’s assume that the
object we’re creating has stored its coordinates in this order: left, top, right, bottom.
Continuing with our myuserobject_new example, we would retrieve the
coordinates out of the argv array:

left = argv[1]->a_w.w_long;
top = argv[2]->a_w.w_long;
right = argv[3]->a_w.w_long;
bottom = argv[4]->a_w.w_long;

Now we’re ready to learn about box_new, which initializes a t_box contained in our
user-interface object.

box_new

Use box_new to initialize a Box.

void box_new (t_box *b, t_patcher *p, short flags, short left,
short top, short right, short bottom);

Writing User Interface Objects 141

b The t_box structure that is the header of your user interface object.
You can just pass a pointer to your object here.

p The patcher argument passed to your creation function.

flags A combination of constants that control the appearance and
behavior of the box, discussed below.

left Left coordinate of the box; should be the left coordinate passed to
your creation function.

top Top coordinate of the box; should be the top coordinate passed to
your creation function.

right Right coordinate of the box; should be based on the left coordinate
and the width passed to your creation function.

bottom Bottom coordinate of the box; should be based on the top
coordinate and the height passed to your creation function.

box_new doesn’t allocate memory for a t_box. Instead, it initializes an existing t_box
inside your object. The flags argument is a combination of the following constants:

#define F_DRAWFIRSTIN 1 draw first inlet

#define F_GROWY 2 can grow in y direction only

#define F_NODRAWBOX 4 don't draw the box

#define F_MOVING 8 Object can draw or reveal other
objects outside its defined clipping
region

#define F_GROWBOTH 32 can grow independently in x and y

#define F_IGNORELOCKCLICK 64 don’t send a click msg if patcher is
locked

#define F_NOGROW 128 don’t draw a grow marker because
box can’t change size

#define F_HILITE 256 highlightable object (for typing into)

#define F_DRAWINLAST 512 Draw inlets after box draws (useful
for colorized objects)

#define F_TRANSPARENT 1024 Allows the creation of transparent
objects.

#define F_SAVVY 2048 Tells Max any queue function you
make calls box_enddraw

#define F_BACKGROUND 4096 Immediately set Box into the
background after creating object

#define

F_NOFLOATINSPECTOR

8192 Prevent object from being edited with
the floating inspector

Writing User Interface Objects 142

The most commonly used flags are F_DRAWFIRSTIN, and F_GROWY or
F_GROWBOTH.

Continuing with our example, here is the t_myuserobject call to box_new:

box_new((t_box *)x, p, F_DRAWFIRSTIN | F_SAVVY, left, top, right,
bottom);

After having initialized the Box, you’ll want to initialize the other fields of your
object. It’s required, because of interrupt level considerations, that you use a Qelem
for redrawing your object’s state in response to messages that can be sent to your
object by a user (such as int or bang). Since you can’t draw yourself immediately in
response to a message, it often helps to keep track of both your object’s logical value
and its most recently drawn value. This way, you’ll know when your object needs to
be updated to reflect a new value.

The next step in a user interface creation routine is to create any Outlets or additional
Inlets it may need. Next, you must assign the Box’s b_firstin field to point to your
object. Here our example sets up a Qelem and does the required assignment. We’ll
discuss the myobject_redraw function shortly.

x->my_qelem = qelem_new(x, (method)myobject_redraw);
x->my_box.b_firstin = (void *)x;

Finally, you’ll want to call box_ready so that the Patcher window knows to draw
your newly initialized object.

box_ready

Use box_ready to prepare your object to be drawn.

void box_ready (t_box *b);

b The t_box structure that is the header of your user interface object.
You can just pass a pointer to your object here.

box_ready calculates where to draw your new Box’s inlets and outlets. Then, if the
new object is being created by the user (rather than being read in from a file),
box_ready will visually select it in the Patcher window, which is handy if the first
thing the user wishes to do is choose Get Info… from the Max menu to set additional
parameters, such as the range for a slider-type object.

After calling box_ready, the user interface object’s creation routine should return a
pointer to its newly created instance.

box_ready((t_box *)x);
return x;

Now we’ve discussed the basic steps in writing a user-interface object creation
routine. Let’s return to our the first creation routine we discused, the one called by
the Patcher when a default instance of our object is being created. We can implement
this routine so that it sets up a proper argv array with our default values, and then
calls the creation routine we just wrote. This avoids any duplication in our code.

Writing User Interface Objects 143

void *myuserobject_menu (t_patcher *p, long left, long top, long
font)
{

t_atom argv[20];

// set up argv the way myuserobject_new wants it…
// first the patcher
argv[0].a_type = A_OBJ;
argv[0].a_w.w_obj = (t_object *)p;
// now the coordinates (font info not used)
argv[1].a_type = argv[2].a_type =

argv[3].a_type = argv[4].a_type = A_LONG;
argv[1].a_w.w_long = left;
argv[2].a_w.w_long = top;
argv[3].a_w.w_long = right;
argv[4].a_w.w_long = bottom;

return myuserobject_new(0, 5, argv);
}

User Interface Object Free Function

User interface objects must define a free function, and it should call box_free to
free any data associated with the Box. Do not call freeobject on your Box. This
will produce an infinite recursion because the user interface object free function has
been called within freeobject, and calling freeobject on the same pointer will
call your free function again, which will call freeobject, and so on. On the other
hand, objects that are not user interface objects should never call box_free.

After calling box_free, your free function should do any other memory disposal or
cleanup as you would in the free function for a normal object.

box_free

Use box_free to free data structures used by a Box.

void box_free (t_box *b)

b The Box structure that is the header of your user interface object.
You can just pass a pointer to your object here.

This function frees data structures associated with a box, such as patch cords. If the
box is visible, it also causes the area of the patcher window underneath the box to be
redrawn.

Messages for User Interface Objects
There are three messages you must implement for a user interface object: click, update,
and psave. Use addmess at initialization time to add methods to respond to these

Writing User Interface Objects 144

messages. Two optional messages, key and bfont, are useful for objects that display
text or numbers.

click

The click message is sent when the user clicks the mouse on your object.

BINDING

addmess (myobject_click, "click", A_CANT, 0);

DECLARATION

void myobject_click (myObject *x, Point pt, short modifiers);

pt Location (in local coordinates) where the mouse was clicked.

modifiers The modifers field of the EventRecord returned by GetNextEvent
for this mouse up event, indicating whether the shift, option,
command, caps lock, or control keys were pressed.

You’ll get this message when the patcher window has detected a click within your
Box’s rectangle. You should respond by tracking the mouse in some appropriate
way. pt is in local coordinates and modifiers is the standard Macintosh EventRecord
modifiers field. Rather than implement a loop in which you wait for the mouse
button to go up, use wind_drag to do mouse tracking. Use patcher_setport to
set the current GrafPort before doing any drawing or mouse tracking.

Important: If you send any messages out your outlets in your click method, you must
set the lockout flag before doing so, and restore it afterward. Here’s an example of
a click routine which sends 0 out an outlet:

void myObject_click (t_myuserobject *x, Point pt, short modifiers)
{

short savelock;

savelock = lockout_set(1);
outlet_int (x->m_ob.o_outlet,0);
lockout_set (savelock);

}

update

The update message is sent when your object needs to be redrawn.

BINDING

addmess (myobject_update, "update", A_CANT, 0);

DECLARATION

void myobject_update (t_myuserobject *x);

The update method draws your user interface object inside its box. In addition, if the
user can grow or shrink your object’s box rectangle, the update method is where you

Writing User Interface Objects 145

should check to see if your object has changed in size. For example, a slider object
might want to reconstruct a bit map of its “slider handle” based on a new width.
You’ll need to store some aspect of the Box’s “old” size within your object to make
this comparison. Also, you can use the box_size function to resize a Box to keep it
from getting too small or too large.

If you wish to make a highlightable user interface object, you need to look at the
b_hilited field of your t_box in your update method. If this field is non-zero, you
should draw your object in a highlighted state. Otherwise, draw it in a non-
highlighted state. In addition, you should implement a method to respond to the key
message described below so the user can type into your object. The Number box is an
example of a highlightable user interface object.

If you plan on doing any drawing in a routine other than your update method, see
the information about the routines patcher_setport and box_nodraw below. Also, if
you will support indexed colors for your user interface object, you should refer to the
Color And User Interface Objects section for information on the color and wcolor
messages.

psave

The psave message is sent when a patcher is saving your object, either because it’s
being copied to the clipboard or because it’s being saved in a file.

BINDING

addmess (myobject_psave, "psave", A_CANT, 0);

DECLARATION

void myobject_psave (t_myuserobject *x, Binbuf *dest);

dest The Binbuf where you should write out a message to save your
object.

Writing the psave method is probably the most arcane thing you’ll have to do in
writing your user interface object. You can use either binbuf_vinsert (described
in Chapter 7) or binbuf_insert to create a message that can recreate your object
when a Max file is opened. First, you need to determine whether your object has been
set to be hidden by checking your t_box’s b_hidden field. The user can hide any
Box or Patchline by choosing Hide on Lock from the Max menu.

Then you’ll save your object’s internal data in a manner something like the example
below. The only things you should change from the example presented below
involve the additional arguments you save, along with the format string passed to
binbuf_vinsert.

You should also know the name of your object’s class. In the example below, our
object is called myuserobject. Assume that we’re saving a user interface object with
the following structure and we’d like to save the my_range and my_value fields
along with the coordinates of our object.

typedef struct myuserobject {

Writing User Interface Objects 146

t_box my_box;
long my_range;
long my_value;

} t_myuserobject;

Here’s an appropriate psave method.

void myObject_psave(myObject *x, void *w)
{

short hidden;
Rect *r;

hidden = myObj.my_box.b_hidden;
r = &myObj.my_box.b_rect;

if (hidden) {
binbuf_vinsert (w,"sssslllll",gensym("#P"),gensym("hidden"),

gensym("user"),gensym("myobject"), (long)(r->left),
(long)(r->top), (long)(r->right - r->left),
(long)(r->bottom - r->top), (long)(x->my_range));

} else {
binbuf_vinsert(w,"ssslllll", gensym("#P"),gensym("user"),

gensym("myobject"),
 (long)(r->left),(long)(r->top),

 (long)(r->right - r->left),
 (long)(r->bottom - r->top),
 (long)(x->my_range));
}

}

We’ll save the coordinates first in a form that can be used by the myuserobject_new
function we defined earlier: first the left, then the top, etc.

A few points of explanation. hidden is a special keyword that tells Max to create the
Box with its b_hidden attribute set. This will be done automatically for you when a
Max file is opened. user is a special keyword that is required for an externally written
user interface object. If you forget to include user, your object will is likely to generate
an error something like…

patcher: doesn’t understand ‘myobject’

…when it is loaded from a file.

The rest of the arguments to binbuf_vinsert are the coordinates of your object’s
Box and other information you want to save.

If we were view as text the result of executing the psave method shown above, it
would look something like this:

#P user myobject 200 200 18 18 128;

Writing User Interface Objects 147

bfont

The bfont message is sent when your object is selected and the user chooses a new font
or font size from the Font menu.

BINDING

addmess (myobject_bfont, "bfont", A_CANT, 0);

DECLARATION

void myobject_bfont (myObject *x, short size, short font);

size The new size chosen by the user, or -1 if the font size has not
changed.

font The number of the new font chosen by the user, or -1 if the font has
not changed.

If you want your user interface object’s Box to change its size or appearance when it
is selected and the user choose a new font or font size from the Font menu, you
should implement a bfont method that will be called after such an action is performed.
IncDec and umenu are examples of Max user interface objects which implement this
method.

key

The key message is sent when your object is highlighted and the user presses a key.

BINDING

addmess (myobject_key, "key", A_CANT, 0);

DECLARATION

void myobject_key (myObject *x, short keyvalue);

keyvalue The ASCII value of the key pressed.

User interface objects that set the F_HILITE bit in the flags argument to box_new will
receive the key message when the user highlights the object and presses a key on the
Macintosh keyboard. Your object should respond by changing its state appropriate to
the key’s ASCII value passed in keyvalue and redrawing itself.

enter

The enter message is sent when the user does something to indicate that the text typed
into your object should be “entered” as permanent.

BINDING

addmess (myobject_enter, "enter", A_CANT, 0);

DECLARATION

void myobject_enter (myObject *x);

Writing User Interface Objects 148

This message is sent when the user presses the Return or Enter keys, highlights
another box, or clicks outside your box in the patcher window. In response to this
message, you should eliminate anything in your display that appears to be
“pending” (such as the three dots shown by the Number box) and accept the typed-
in value.

clipregion

The clipregion message is sent when the Patcher wants to know how your object
should overlap other objects. If you don’t implement this method, it’s assumed that
your object fills its rectangle.

BINDING

addmess (myobject_clipregion, "clipregion", A_CANT, 0);

DECLARATION

void myobject_clipregion (t_myobject *x, RgnHandle *rgn, short
*result);

This message allows your object to define a non-rectangular subset of its rectangle as
its drawing area. For instance, the umenu object displays the current menu item in a
rounded-corner rectangle. You set the result parameter to one of four values:

• CLIPRGN_RGN indicates you have set the rgn parameter to a Mac OS region (an
example is shown below) and that the object draws only within the defined
region.

• CLIPRGN_RECT means your object will fill its entire rectangle. In this case you do
not modify the rgn parameter.

• CLIPRGN_EMPTY means your object isn’t going to draw anything. Transparent
objects such as dropfile and ubutton could use this setting. The rgn parameter
should not be modified.

• CLIPRGN_COMPLEX means that your object’s clipping region is so complicated it
isn’t worth definining as a region. Instead, the Patcher should always make your
object draw on top of any object underneath it. The comment object, which draws
text transparently on top of other objects, uses this setting. The rgn parameter
should not be modified.

Here’s an example of an object that defines a circular clipping region in its clipregion
method.

void myobject_clipregion (t_myobject *x, RgnHandle *rgn,
short *result)
{

*result = CLIPRGN_RGN;
OpenRgn();
FrameOval(&x->my_box.b_rect); // use box’s rect
CloseRgn(*rgn = NewRgn());

}

Writing User Interface Objects 149

For more information on the clipregion method, see the Transparent Objects section
below.

bidle

The bidle message is sent when the cursor is over your object’s rectangle in a locked
Patcher window. This method is optional, since not all objects need to adjust or track
the cursor.

BINDING

addmess (myobject_bidle, "bidle", A_CANT, 0);

DECLARATION

void myobject_bidle (t_myobject *x);

The bidle message is sent when the cursor is over your object’s rectangle in a locked
Patcher window. You’ll typically track the cursor—to find its location, call the Mac
OS function GetMouse. If you want to set the cursor to a different shape, call
wind_setcursor with an argument of –1 before returning.

Routines for User Interface Objects
Here are some helpful functions for writing your user interface object. As was
mentioned above, most user interface objects will need to use a Qelem to change
their displayed state in response to a message such as int or set. In your queue
function it is important to call patcher_setport and box_nodraw before doing
any drawing, since your object may be in a closed patcher window or have been
hidden by the user. However, you should not call these routines in your update
method. If you want to call your update method from within a queue function, do
the necessary preparation outside of the update method and then call it. There is an
example under the description of the color message.

box_ownerlocked

Use box_ownerlocked to determine if a patcher that contains a box is locked.

short box_ownerlocked (t_box *b);

b The t_box structure that is the header of your user interface object.
You can just pass a pointer to your object here.

This function returns non-zero if the box’s owning patcher window is locked, zero if
it's unlocked.

Writing User Interface Objects 150

Unlocked Patcher Window

Locked Patcher Window

User interface objects may want to draw themselves differently if the Patcher
window is locked. You may have noticed that a box’s outlets are extended
downward one pixel when a Patcher is unlocked. This is done automatically for you.

box_size

Use box_size to resize a box.

void box_size (t_box *b, short hsize, short vsize);

b The t_box structure that is the header of your user interface object.
You can just pass a pointer to your object here.

hsize The new horizontal size of the box.

vsize The new vertical size of the box.

box_nodraw

Use box_nodraw to determine if a user interface object should be drawn.

short box_nodraw (t_box *b);

b The Box structure that is the header of your user interface object.
You can just pass a pointer to your object here.

box_nodraw should be used when drawing outside of a user interface object’s
update method. It returns non-zero if the Box’s Patcher is locked and the Box is
hidden (because the user has chosen Hide on Lock from the Max menu). It can also
set up clipping regions so your object draws properly with other objects. For
instance, if your object is partially hidden by the edge of a bpatcher, box_nodraw will
handle clipping for you. However, it will only provide these services if you pass the
F_SAVVY flag to box_new, which indicates you have used box_nodraw and
box_enddraw in any non-update drawing.

Your object should not draw in response to any typed messages it receives (i.e.,
messages other than those with an A_CANT argument type specifier). For example, a
slider draws its changed value in a queue function set in response to an int messages.
Inside the queue function, it checks box_nodraw before drawing. You should only
call box_nodraw after you’ve first determined that your object’s patcher window is
visible (with patcher_setport). box_nodraw will crash if you call it in your user
interface object’s update method. All clipping is set up for you in the update method
whether or not you passed the F_SAVVY flag to box_new.

Writing User Interface Objects 151

box_enddraw

Use box_enddraw to tell a Patcher you are finished drawing after having called
box_nodraw.

void box_enddraw (t_box *b);

b The t_box structure that is the header of your user interface object.
You can just pass a pointer to your object here.

box_enddraw is used when drawing outside of your update method. It is called
after you are finished drawing, and only if a previous call to box_nodraw returns
false. An example draw routine might be:

if (gp = patcher_setport(x->m_box.b_patcher)) {
if (!box_nodraw((t_box *)x)) {

// draw here
box_enddraw((t_box *)x);

}
}

To get the maximum benefit from box_nodraw and box_enddraw, add the F_SAVVY
flag to your call to box_new in the new instance routine.

box_new((t_box *)x, patcher, F_DRAWFIRSTIN | F_NODRAWBOX |
F_GROWBOTH | F_SAVVY, l, t, r, b);

box_redraw

Use box_redraw to cause a box’s frame and contents to be redrawn.

void box_redraw (t_box *b);

b The t_box structure that is the header of your user interface object.
You can just pass a pointer to your object here.

This function erases and redraws the entire Box as well as any other Boxes or
Patchlines in the affected area. Your object will receive an update message as a result.

box_visible

Use box_visible to determine if a box is visible (whether in a visible patcher, or
visible within a bpatcher).

short box_visible (t_box *b);

Writing User Interface Objects 152

b The Box structure that is the header of your user interface object.
You can just pass a pointer to your object here.

This function returns non-zero if the Box is visible, or zero if the Box is not visible on-
screen.

patcher_deselectbox

Use patcher_deselectbox to visually deselect a box in a patcher.

void patcher_deselectbox (t_patcher *p, t_box *b);

p The box’s owning patcher (b->b_patcher).

b The t_box structure that is the header of your user interface object.
You can just pass a pointer to your object here.

patcher_dirty

Use patcher_dirty to mark a patcher as having unsaved data.

void patcher_dirty (t_patcher *p);

p Your object’s owning patcher.

This function sets the dirty bit in a Patcher’s window, so that the user will asked to
save changes if the window is closed. The only time you have to do this is if your
object stores its data inside its owning patcher (for example, a table object can store
its elements inside a Patcher) and the data is changed.

Note: If your object is not a user interface object, you can find your Box’s “owning
patcher” in your object creation function (this is the only time this will work) by
getting the object bound to the symbol #P.

void *mypatcher;

mypatcher = ((t_symbol *)gensym("#P"))->s_thing;

patcher_selectbox

Use patcher_selectbox to visually select a box.

void patcher_selectbox (t_patcher *p, t_box *b);

p The box’s owning patcher (b->b_patcher).

b The t_box structure that is the header of your user interface object.
You can just pass a pointer to your object here.

Writing User Interface Objects 153

patcher_setport

Use patcher_setport to set the current GrafPort to a patcher window.

GrafPtr patcher_setport (t_patcher *p);

p Your object’s owning patcher.

This function sets the current GrafPort to the Patcher’s window.
patcher_setport returns the previous port, or 0 if the Patcher window is not
currently visible, in which case you should not draw anything. After you’re through
drawing in the patcher window, call SetPort with the result of a successful
patcher_setport. Note that this function is not equivalent to wind_setport,
though the way you’d use it is similar to the example shown under wind_setport
in Chapter 10. Do not use wind_setport instead of patcher_setport in a user
interface object. If you think you’re clever and pass the patcher’s p_wind field to
wind_setport, you will get burned eventually, since patchers contained within
bpatcher objects contain invalid information in this field.

patcher_okclose

Use patcher_okclose to set the receiver of a patcher window’s okclose message.

void patcher_okclose (t_patcher *p, t_object *target);

p Your object’s owning patcher.

target Your object.

After calling patcher_okclose, the patcher window will send any okclose message
it receives on to the object target. In the case where your object opens a Patcher
window itself, you might want to handle how the window is saved or closed in a
non-standard way. You should then implement an okclose method and pass yourself
to patcher_okclose after you’ve opened the patcher window. See Chapter 10 for a
description of writing an okclose method.

ispatcher

Use ispatcher to determine if an object is a patcher.

short ispatcher (t_object *obj);

obj The mystery object that could be a patcher.

Returns non-zero if an object is a Patcher, zero if not. You might use this to locate all
the patcher windows from the window list. First use GetWRefCon to get a pointer to
the Max t_wind object associated with a Macintosh window, then call ispatcher on
the w_assoc field of the t_wind.

Or, if you’re traversing through the list of a patcher’s boxes, you might be interested
to know if an object associated with the box (in the b_firstin field) is a subpatcher.

Writing User Interface Objects 154

Instead of passing the box itself, check to see if the b_firstin field of a box is non-
zero, and if so, pass it to ispatcher. You need to pass a genuine Max object to
ispatcher.

isnewex

Use isnewex to determine if an object is an object box.

short isnewex (t_object *obj)

obj The mystery object that could be an object box.

Returns non-zero if an object is an object box that holds the text of normal objects.
You can then find the pointer to the object itself in the t_box’s b_firstin field.
Make sure you pass a genuine Max object to isnewex.

Note: You can always find the type of an object using the macros ob_name or
ob_class defined in ext_mess.h, then comparing the string (in the case of ob_name)
or symbol (in the case of ob_class) to the one you’re looking for. ispatcher and
isnewex are slightly faster.

newex_knows

Use newex_knows to determine if the object in an object box can respond to a
message.

short newex_knows (t_box *b, t_symbol *msg);

b The t_box structure that is the header of your user interface object.
You can just pass a pointer to your object here.

msg The message selector that the object may or may not understand.

This function returns non-zero if the object is a box that holds the text of normal
objects and its associated object has a method for msg.

patcher_eachdo

Use patcher_eachdo to call a function on every patcher in memory.

void patcher_eachdo (method fun, void *arg);

fun The function you want called. See below for how to declare it.

arg An argument you want passed to the function.

The function fun will be called for every patcher in memory, including hidden
subpatchers. It should be declared as follows:

short myEachFun (t_patcher *patcher, void *arg);

Writing User Interface Objects 155

patcher A patcher window.

arg The arg argument passed to patcher_eachdo.

Your function needs to return 0 if you wish to continue being called for more
patchers, non-zero if you want to stop. You might use patcher_eachdo to
implement a search routine for a particular object. It is used by the built-in objects
send and receive in response to a dblclick message. These objects search all Patchers
for any other send or receive objects bound to the same t_symbol, and bring the
corresponding object’s window to the front.

assist_drawstring

Use assist_drawstring to draw a string in the assistance area of a patcher
window.

void assist_drawstring (void *patcher, char *string);

patcher The patcher where you want to draw the string.

string The C string to draw.

The assistance area of a patcher window can be used for any helpful messages while
the user is clicking on your object. An example is the display of the current
horizontal and vertical offsets when scrolling what is visible inside a bpatcher object.

Color And User Interface Objects
If your user-interface object responds to the color message, users can take advantage
of a standard submenu for assigning it one of sixteen colors. The color menu
previews each color and allows color selection.

The color menu sets the b_color field of your object’s t_box to a number between 0
and 15. Then you are sent an update message to redraw your object. This means that

Writing User Interface Objects 156

if you implement the color feature, your update method needs to check for changes
in the b_color field of the box. You use the function box_color to get the current
RGB color associated with the value of the b_color field.

color

The color message has a number of uses. First, you must respond to it if the color
menu will be enabled when your object is selected. Second, the color message is sent
to your object when the user sets the color to 0 (usually black or gray). It can also be
sent directly by the user to change the object’s color. You should queue a redraw of
your object when receiving this message, as well as setting the b_color field of your
box to the value you receive as an argument. You’ll need to constrain this value
between 0 and 15 (an index into the set of standard colors), since a Max user could
send any argument to the color message.

BINDING

addmess (myobject_color, "color", A_LONG, 0);

DECLARATION

void myobject_color (myObject *x, long color);

color A number between 0 and 15 representing the color chosen.

In response to this message, you should set the b_color field of your object to the
color value, then redraw your object. Here’s an example of how to redraw an object
using the defer function.

void myuserobject_color (t_myuserobject *x, long color)
{

x->m_box.b_color = color; // set the box’s color field
defer(x,(method)myuserobject_docolor,0,0,0); // cause redraw

}

void myuserobject_docolor (t_myuserobject *x)
{

GrafPtr gp;

if (gp = patcher_setport(x->m_box.b_patcher)) {
if (!box_nodraw((t_box *)x)) {

myuserobject_update(x);
box_enddraw((t_box *)x);

}
SetPort(gp);

}

}

In an update message, you need to translate a color value in the b_color field of a box
into an index that references the standard set of colors. This can be performed with
the box_color function.

Writing User Interface Objects 157

frgb, brgb, rgb1 etc.

These messages set colors for various aspects of your object. They are not sent by
Max but exist only as conventions, so users can expect that if your object supports
RGB colors it will work with these messages. A standard component of an inspector
contains a swatch object that is designed to work with these messages. The frgb
message should correspond to the “content” in your object (such as the color of the
text), while the brgb message should set the background color behind the content.
Additional colors, if your object uses them, should be set with rgb1, rgb2, etc.

BINDING

addmess (myobject_frgb, "frgb", A_LONG, A_LONG, A_LONG, 0);

DECLARATION

void myobject_frgb (t_myuserobject *x, long r, long g,
long b);

r, g, b Components of an RGB color as values between 0-255.

This message should change the color of some component of your object, then cause
the object to be redrawn at a lower priority. Here’s an example. Assume an object has
a field m_fg that is an RGBColor that determines the foreground color used by an
object. The frgb method shown below converts between the Max representation (8
bits per component) and the Mac OS RGBColor representation (16 bits per
component), then defers a redraw of the object.

void myuserobject_frgb (t_myuserobject *x, long r, long g, long b)
{

x->m_fg.red = r << 8;
x->m_fg.green = g << 8;
x->m_fg.blue = b << 8;
defer(x,(method)myuserobject_doredraw,0,0,0);

}

Here is the myuserobject_doredraw function, which should look fairly familiar from
other examples you’ve seen.

void myuserobject_doredraw(t_myuserobject *x)
{

GrafPtr gp;

if (gp = patcher_setport(x->m_box.b_patcher)) {
if (!box_nodraw((t_box *)x)) {

myuserobject_update(x);
box_enddraw((t_box *)x);

}
SetPort(gp);

}
}

Writing User Interface Objects 158

box_color

Use box_color to set the current foreground color to the color of your box.

void box_color (t_box *b);

b The t_box structure that is the header of your user interface object.
You can just pass a pointer to your object here.

box_color assumes you’ve stored the color index (0-15) in the b_color field of
your box. It checks to see if the patcher window is currently in color and, if so, it
looks up the RGB color that corresponds to the b_color field and sets the
foreground color to that value. After calling box_color you can draw the colored
parts of your object. Then you’ll want to restore the foreground color to black by
calling RGBForeColor.

box_usecolor

Use box_usecolor to determine if your box should be drawn in color.

long box_usecolor (t_box *b);

b The t_box structure that is the header of your user interface object.
You can just pass a pointer to your object here.

box_usecolor returns a non-zero value if your object box is to be drawn in color,
and zero otherwise. It takes into account multiple monitors of different depths in
making this determination. It would be a good idea to call this each time your object
receives an update message.

box_getcolor

Use box_getcolor to get the RGB values of the color associated with a box color
index.

void box_usecolor (t_box *b, short index, RGBColor *rgb);

b The t_box structure that is the header of your user interface object.
You can just pass a pointer to your object here.

index The color index (0-15) for which you want the RGB values.

rgb Where the RGB values for the index will be placed.

box_getcolor returns in rgb the RGB values of the color with the color index (0-15)
supplied in its index argument

Writing User Interface Objects 159

Transparent Objects
You can create objects that do not completely fill in their drawing rectangle, exposing
other objects beneath them. A common example is the comment object that draws
its text over objects beneath it.

First, let's look at a simple case: an object that wants to draw text over a background
without erasing or filling a rectangle. This example object draws the fixed string
"Max" within its rectangle. It also responds to the "frgb" message to set the color of
the text, and therefore needs to redraw itself in a qelem. The data structure for this
object would be :

typedef struct _drawmax
{

t_box d_box;
void *d_qelem;
RGBColor d_color;

} t_drawmax;

Next, the new instance routine. The object stores its rectangle coordinates and the
red, blue, and green color values.

void *drawmax_new(t_symbol *s, short argc, t_atom *argv)
{

t_drawmax *x = (t_drawmax *)newobject(drawmax_class);
t_patcher *p = argv[0]->a_w.w_obj;
short top, left, bottom, right;

top = argv[1]->a_w.w_long;
left = argv[2]->a_w.w_long;
bottom = argv[3]->a_w.w_long;
right = argv[4]->a_w.w_long;

box_new(x,p,DRAWFIRSTIN | F_NODRAWBOX | F_GROWBOTH | F_SAVVY |
F_TRANSPARENT,left,top,right,bottom);

x->d_color.red = argv[5]->a_w.w_long;
x->d_color.green = argv[6]->a_w.w_long;
x->d_color.blue = argv[7]->a_w.w_long;

x->d_qelem = qelem_new(x,(method)drawmax_redraw); // define qelem
box_ready((t_box *)x);
return x;

}

Next is the object's update method. It clips to the box's rectangle so it doesn't draw
the word "Max" outside of its box. Notice that it doesn't erase the box first – the text
will appear on top of the existing background.

void drawmax_update(t_drawmax *x)
{

Writing User Interface Objects 160

RgnHandle old,boxclip;
RGBColor saveColor;

GetClip(old = NewRgn()); // get existing clip region
RectRgn(boxclip = NewRgn(), &x->d_box.b_rect); // box's rect as region
SectRgn(old,boxclip,boxclip); // intersect them
SetClip(boxclip); // make current clip region

// get ready to draw text
MoveTo(x->d_box.left + 4, x->d_box.bottom – 4);

TextFont(0);
TextSize(12);
GetForeColor(&saveColor); // get existing color
RGBForeColor(&x->d_color); // set to your color
DrawString("\pMax"); // draw the text

RGBForeColor(&saveColor); // restore everything…
SetClip(old);
DisposeRgn(old);
DisposeRgn(boxclip);

}

This is how the object handles changes to color.

void drawmax_frgb(t_drawmax *x, long r, long g, long b)
{

x->d_color.red = r << 8; // get the new color
x->d_color.green = g << 8;
x->d_color.blue = b << 8;
qelem_set(x->d_qelem); // make it redraw

}

Next is the routine drawmax_redraw, the routine called from within a qelem. It's a
wrapper around drawmax_update with all of the goodies—box_nodraw,
box_enddraw etc.

void drawmax_redraw(t_drawmax *x)
{

GrafPtr gp;

if (gp = patcher_setport(x->d_box.b_patcher)) {
if (!box_nodraw((t_box *)x)) {

drawmax_update(x);
box_enddraw((t_box *)x);

}
SetPort(gp);

}
}

One thing transparent objects can do to help Max optimize their redrawing is to have
a "clipregion" method. When objects below yours are redrawing, Max clips out your

Writing User Interface Objects 161

object. If your object is transparent, you may not want your entire box rectangle
clipped out. With the clipregion method you can specify what you want clipped.

addmess((method)myobject_clipregion, "clipregion", A_CANT, 0);

This method tells Max the region in which your object has content. For the drawing
of text, the region masking the text is too complicated to define, so we return a
special constant CLIPRGN_COMPLEX. Basically, this means it's impossible to avoid
redrawing the text on top of objects below it when they need to be redrawn. Objects
that are not transparent shouldn't use this constant—indeed, there's no reason for
them to supply the default CLIPRGN_RECT answer to the clipregion method at all.

void myobject_clipregion(t_drawmax *x, RgnHandle *rgn, short *result)
{

*result = CLIPRGN_COMPLEX;
}

If your object doesn't define a clipregion method, it's assumed you clip to the object's
rectangle.

Another possibility is an object that draws a shape that does not entirely fill the
object's rectangle. The umenu object is one example. Here is an object that draws a
rectangle that is three pixels smaller than its bounding rectangle.

void smallrect_update(t_smallrect *x)
{

Rect r = x->s_box.b_rect;

InsetRect(&r,3,3);
if (!EmptyRect(&r))

PaintRect(&r);
}

This object's clipregion method would use the following code. It sets the region
handle to the region that defines a small rectangle, and sets the result to
CLIPRGN_REGION, indicating there's a region to consider. Your method needs to
define the region handle, but it should not use it in any other way, because Max will
dispose of it shortly after having called your clipregion method.

void smallrect_clipregion(t_smallrect *r, RgnHandle *r, short *result)
{

Rect rect;

rect = x->s_box.b_rect;
InsetRect(&rect,3,3); // make a rectangle the same

// size as what you draw
*r = NewRgn();
RectRgn(*r,&rect); // turn it into a region
*result = CLIPRGN_REGION;

}

Writing User Interface Objects 162

The example circle object in the SDK, which is heavily commented, shows another,
more elaborate use of clipping regions. It also uses the box_invalnow method in its
qelem routine to draw what it may have revealed by moving, and it demonstrates
the proper way to handle dragging for transparent objects.

Inspectors

User interface objects (and, possibly, certain non-UI objects that have their own
windows) may wish to implement a way for users to change settings using a patcher
rather than a dialog box. This is possible using the new inspector mechanism in Max
4. An inspector is a specially named patch, opened when the user selects your object
in an unlocked patcher and chooses "Get Info…", that can edit the settings of an
instance of your object.

Inspectors are intended to make Max more customizable (users can change the
inspector patches as desired, and/or use features from inspectors in their own
patches), as well as to make it easier to port the software to other platforms. In order
to implement an inspector, your object has to do the following:

• bind the function inspector_open to the word info

• add a call to notify_free in your object’s free method

• if it is not possible to parse the object’s output in a psave method, implement a
pstate method with a simpler format.

• if necessary, implement methods to change the internal settings of your object that
are saved in its psave output. For instance, if your object has a "maximum" value
saved in a patcher that was changeable in a traditional Get Info dialog, you will
need to add a message to change it.

After the object has been properly prepared, you can write an inspector patch named
myobject-insp.pat (substitute the name of your object for myobject). You then place the
inspector patch anywhere in the search path (preferably in the inspectors subfolder
of the patches folder). The inspector patch uses the thisobject object to communicate
with an instance of your object. thisobject outputs the messages generated by your
object’s psave or pstate method. You use this information to show the object’s
current state. Your patch can then send thisobject messages to change the settings of
the instance; the messages are simply passed on to your object. A commented
example of an inspector patch is provided with the hslider object source code in the
SDK.

inspector_open

To implement an inspector, your object binds the info message to the function
inspector_open, as shown below:

addmess(inspector_open, "info", A_CANT, 0);

Writing User Interface Objects 163

The inspector_open function is built into Max; it will open a patcher file called
myobject-insp.pat found in the search path. Opening a patch using inspector_open
performs special binding so that the thisobject object within the patch is linked to
the instance being inspected. Inspector patches need to be written using special
techniques illustrated in the hslider example.

notify_free

Use notify_free in the free method of an object that uses inspector_open.

void notify_free(t_object *owner);

owner The object associated with the inspector.

Call this in the free method for any object that has an inspector; it disconnects an
object from its inspector if open. notify_free should be called before box_free.

pstate

You can use the pstate method to provide a alternative to your existing psave
method that makes it easier to write an inspector patch. For instance, some psave
methods need to include large amounts of data that will not apply to an inspector, or
they save the data in a bitfield format that is difficult to parse. If your object has a
pstate method, it will be called in preference to the psave or save methods.

BINDING

addmess (myobject_pstate, "pstate", A_CANT, 0);

DECLARATION

void myobject_pstate (myobject *x, void *w);

w A pointer to a binbuf where your object will construct its saved
output message.

The pstate output should consist of a symbol that names your object’s class, followed
by values that reflect its settings that can be saved and restored. For instance, here’s a
pstate method that saves three settings inside an object m_multipler, m_weight, and
m_length.

void myobject_pstate(t_myobject *x, void *w)
{

binbuf_vinsert(w, "slll", gensym("myobject"), x->m_multiplier,
x->m_weight, x->m_length);

}

Writing User Interface Objects 164

QuickTime Image Routines
The Max QuickTime image routines can be used by externals that need to use
features of QuickTime to open files. QuickTime has function s that can open many
file types, including image files (jpeg, gif, pict and photoshop files), time-based
media files (movies, Flash and 3-D files) and non-image files (text and audio) with
scaling and timing factor manipulation. For a complete list of files openable by
QuickTime, refer to the QuickTime Developer documentation.

qtimage_open

Use qtimage_open to open a file and render it into a GWorld.

long qtimage_open(char *name, short path, CGrafPtr *gp,
void *extra);

name File name to open.

path File path for the selected file.

gp GWorld that will receive the rendered file.

extra Information that may be used to render the file (see qti_extra).

Given a filename, path and GWorld(gp), qtimage_open will open a file and render
it in the given GWorld. Extra information may be used in rendering the image, such
as scaling and timeoffset (for time-based media).

If gp is NULL, qtimage_open will allocate a new 32-bit offscreen gworld to contain
the image (scaled, if necessary). It is the calling object’s responsibility to free this
memory . If the calling object needs to use an on-screen GWorld, a non 32-bit
GWorld or the autofit scaling mode, gp must be a valid pointer.

If quicktime is not installed, this routin will only open PICT files.

qtimage_getrect

Use qtimage_getrect to return the size needed to render an image file (scaled, if
necessary).

long qtimage_getrect(char *name, short path, Rect *r,
void *extra);

name File name to query.

path File path for the selected file.

r A Rect structure that will be filled with the required render size.

extra Information that may be used to render the file (see qti_extra).

Writing User Interface Objects 165

qti_extra_new

Use qti_extra_new to create a new qti_extra object.

void *qti_extra_new(void);

qti_extra_free

Use qti_extra_free to free the memory allocated by qti_extra_new.

void qti_extra_free(qti_extra *extra)

extra qti_extra object to free.

qti_extra_matrix_get

Use qti_extra_matrix_get to copy the contents of a qti_extra object’s matrix
member into a MatrixRecord.

long qti_extra_matrix_get(qti_extra *extra,
MatrixRecord *matrix);

extra The qti_extra object that is the copy source.

matrix A MatrixRecord that is the copy destination.

qti_extra_matrix_get will copy the contents of a qti_extra object’s matrix
member into a MatrixRecord. See the Apple QuickTime developer documentation
for more information on MatrixRecords and how they are used for transforming
images. Both extra and matrix must be valid pointers.

qti_extra_matrix_set

Use qti_extra_matrix_set to copy the contents of a MatrixRecord into a qti_extra
object’s matrix member.

long qti_extra_matrix_set(qti_extra *extra,
MatrixRecord matrix);

extra The qti_extra object that is the copy destination.

matrix A MatrixRecord that is the copy source.

qti_extra_matrix_set will copy the contents of a MatrixRecord into a
qti_extra object’s matrix member. See the Apple QuickTime developer
documentation for more information on MatrixRecords and how they can be used for
transforming images. For the qti_extra matrix memver to be used for scaling in
qtimage_open and qtimage_rect, the qti_extra object’s scalemode must be

Writing User Interface Objects 166

set to QTI_SCALEMODE_MARTIX (see qti_extra_scalemode_set). extra and
matrix must be valid pointers.

qti_extra_rect_get

Use qti_extra_rect_get to copy the contents of a qti_extra object’s rect
member into a Rect struct.

long qti_extra_rect_get(qti_extra *extra, Rect *rct);

extra The qti_extra object that is the copy source.

rct The Rect struct that is the copy destination.

qti_extra_rect_get will copy the contents of a qti_extra object’s rect member
into a standard Rect structure. See the Apple QuickTime developer documentation
for more information on using Rect structures to transform images. Both extra and
rct must be valid pointers.

qti_extra_rect_set

Use qti_extra_rect_set to copy the contents of a Rect struct into a qti_extra
object’s rect member.

long qti_extra_rect_set(qti_extra *extra, Rect *rct);

extra The qti_extra object that is the copy destination.

rct The Rect struct that is the copy source.

qti_extra_rect_set will copy the contents of a Rect struct into a qti_extra
object’s rect member. See the Apple QuickTime developer documentation for more
information on using Rect structures to transform images. For the qti_extra
object’s rect member to be used for scaling in qtimage_open and qtimage_rect,
the qti_extra objects scalemode member variable must be set to
QTI_SCALEMODE_RECT (see qti_extra_scalemode_set). Both extra and
rct must be valid pointers.

qti_extra_scalemode_get

Use qti_extra_scalemode_get to copy the contents of a qti_extra object’s
rect member into a scalemode (long).

long qti_extra_scalemode_get(qti_extra *extra,
long *scalemode);

extra The qti_extra object that is the copy source.

scalemode The scalemode (implemented as a long) that is the copy destination.

Writing User Interface Objects 167

Both extra and scalemode must be valid pointers.

qti_extra_scalemode_set

Use qti_extra_scalemode_set to copy a scalemode into a qti_extra object’s
rect member variable.

long qti_extra_scalemode_set(qti_extra *extra, long
scalemode);

extra The qti_extra object that is the copy destination.

scalemode The scalemode (implemented as a long) that is the copy source.

qti_extra_scalemode_set will copy a long value into a qti_extra object’s
rect member variable. extra must be a valid pointer. Possible values for scalemode
are:

QTI_SCALEMODE_NONE

QTI_SCALEMODE_MATRIX

QTI_SCALEMODE_RECT

QTI_SCALEMODE_AUTOFIT

If using QTI_SCALEMODE_AUTOFIT, qtimage_open reqires a valid GWorld
pointer(gp). Also, when using QTI_SCALEMODE_AUTOFIT, the qtimage_rect
function is not used, since the rect required to render the image will be the same as
the dimensions of the GWorld passto to qtimage_open.

qti_extra_time_get

Use qti_extra_time_get to copy the contents of a qti_extra’s time member
variable into a double.

long qti_extra_time_get(qti_extra *extra, double *time);

extra The qti_extra object that is the copy source.

time The double that is the copy destination.

See the Apple QuickTime developer documentation for more information on time
units. Both extra and time must be valid pointers.

qti_extra_time_set

Use qti_extra_time_set to copy a double value into a qti-extra time
member variable.

long qti_extra_time_set(qti_extra *extra, double time);

Writing User Interface Objects 168

extra The qti_extra object that is the copy destination.

time The double value that is the copy source.

extra must be a valid pointer. See the Apple QuickTime developer documentation
for more information on time units.

Graphics Windows 169

Max contains a set of routines for managing bit map graphics and offscreen “sprites”
needed to do animation and paint-program interaction. Graphics windows, known
as GWinds, are created by the Max user with the graphic object, but they can also be
created directly from your external object by calling gwind_new. Graphics windows
are primarily display vehicles—if you want to create a specialized user interface,
you’re better off creating your own window (see Chapter 10). Max programmers can
access the mouse in a graphics window using the MouseState object, but a typical
object that uses a graphics window will only draw something—animation, shapes,
text, etc.

The t_gwind structure and pertinent constants are declared in ext_anim.h.

Note: we recommend using the Max 4 lcd object for graphics rather than
implementing objects that use these routines.

Graphics Window Routines
Here are routines for creating graphics windows, associating them with symbols, and
drawing in them.

colorinfo

Use colorinfo to get information about the current color environment.

void colorinfo (CInfoRec *cinfo);

cinfo A CInfoRec data structure that will hold the information about the
color environment. See below for the definition of a CInfoRec.

colorinfo fills in the fields of an existing CInfoRec (defined in ext_anim.h), which is
defined as follows:

typedef struct {
short c_hasColorQD;
short c_depth;
short c_has32bitQD;
short c_inColor;
short c_curDevH;
short c_curDevV;

} CInfoRec;

C H A P T E R 12

Graphics Windows

Graphics Windows 170

c_hasColorQD is non-zero if the machine has Color Quickdraw in ROM. c_depth
is the bit depth of the screen (1-24). c_has32bitQD is non-zero if the system has 32-
bit Quickdraw installed. c_inColor is non-zero if there are colors, 0 if the monitor is
set to display gray scales. c_curDevH and c_curDevV are width and height,
respectively, of the current GDevice.

Typically, you’ll call colorinfo in your Initialization routine, and store the results
in global variables. Note that c_depth and c_inColor could change over time. If
these are important to you, consider calling colorinfo more regularly. If you’re
writing a user interface object, you can use the box_usecolor function to determine
whether you should draw your object in color or not.

gwind_new

Use gwind_new to make a new graphic window object.

t_gwind *gwind_new (t_object *assoc, t_symbol *name,

short flags, short left, short top,
short right, short bottom);

assoc A pointer to your object.

name A name for other objects to be able to access the GWind. All access
of GWinds is done through binding to Symbols, similar to the way
the Max table object is bound to a Symbol.

flags 1 if you want the window created without a title bar, 0 otherwise.

left Left global coordinate of the window.

top Top global coordinate of the window.

right Right global coordinate of the window.

bottom Bottom global coordinate of the window.

gwind_new creates a new GWind object. Unlike wind_new, all graphics windows
you create are immediately visible.

gwind_offscreen

Use gwind_offscreen to initialize an Offscreen buffer for a graphics window.

void gwind_offscreen (t_gwind *gw);

gw A graphics window.

You can also send the offscreen message to a GWind to perform this function.

gwind_get

Use gwind_get to return the GWind associated with a symbolic name.

Graphics Windows 171

t_gwind *gwind_get (t_symbol *name);

name Name associated with the graphics window.

If a GWind object is associated with the Symbol name, gwind_get returns a pointer
to it. Otherwise, it returns 0. You should call gwind_get every time one of your
methods wants to start accessing a GWind, because you never know whether the
GWind object still exists or not. See the example under gwind_setport for a typical
use of gwind_get.

gwind_setport

Use gwind_setport to set the current GrafPort to a graphics window.

t_gwind *gwind_setport (t_gwind *gw);

gw A graphics window.

If the GWind gw is visible, gwind_setport does a SetPort to its associated
Macintosh window and returns the previous GrafPort. If the window is not visible,
gwind_setport returns 0. All drawing into a graphics window should be prefaced
by a call to gwind_setport, as in the example below. Note also the correct use of
gwind_get, assuming the m_windsym field of myObject is a Symbol which
(supposedly) holds the name of a graphics window object.

void myobject_draw(myObject *x)
{

GrafPtr save;
t_gwind *g;

if (g = gwind_get(x->m_windsym)) { /* does it exist? */
if (save = gwind_setport(g)) { /* is it visible? */

/* draw something in the GWind here */

SetPort(save);
}

}
}

Offscreen Routines
Although GWinds are designed to use the offscreen and sprite routines, there’s no
reason why you can’t use them in your own window if you wish. As mentioned
above, gwind_offscreen will initialize an Offscreen structure for a GWind. You
can initialize the offscreen structure for your own window with off_new.

The Offscreen routines take care of “buffering” drawing to minimize unsightly
screen flicker. This facility is similar to that provided by 32-bit Quickdraw GWorld
functions, and the Offscreen structure transparently uses 32-bit Quickdraw available.

Graphics Windows 172

The user of the routines does not need to worry about whether GWorlds are being
used or not.

Typically, you’ll use the Sprite routines to draw into an Offscreen structure. The
Offscreen data structure is declared in ext_anim.h.

off_new

Use off_new to create a new Offscreen structure.

Offscreen *off_new (GrafPtr dest);

dest The window that the Offscreen will draw into.

off_new creates a new Offscreen structure which will have the same dimensions as
the GrafPort dest it is linked to. If the size of your window changes, call
off_resize. You must create an Offscreen before you can create or use any Sprites.
Free an Offscreen with off_free, since it’s not a Max object.

off_free

Use off_free to dispose of an Offscreen.

void off_free (Offscreen *os);

os The Offscreen structure you want to free.

off_copy

Use off_copy to copy an entire Offscreen to its associated GrafPort.

void off_copy (Offscreen *os);

os The Offscreen structure to be copied.

off_copyrect

Use off_copyrect to copy a portion of an Offscreen to its associated GrafPort.

void off_copyrect (Offscreen *os, Rect *src);

os The Offscreen structure to be copied.

src Rectangle to copy.

The rectangle src in the Offscreen will be copied to the same location in the
Offscreen’s destination GrafPort.

Graphics Windows 173

off_maxrect

Use off_maxrect to return a rectangle that covers two source rectangles within an
Offscreen.

void off_maxrect (Offscreen *os, Rect *src1, Rect *src2,
Rect *result);

os An Offscreen structure.

src1 Rectangle to be covered.

src2 Another rectangle to be covered.

result The resulting rectangle that includes both src1 and src2 and is
within the bounding rectangle of os will be placed here.

off_tooff

Use off_tooff to copy a BitMap to an Offscreen.

void off_tooff (Offscreen *os, PixMapHandle *src,
Rect *srcRect, Rect *dstRect);

os An Offscreen structure.

src PixMap or BitMap containing the bits to copy.

srcRect Portion of src you want copied.

dstRect Location in the Offscreen where the bits should be copied.

This function copies the pixels in src to the Offscreen buffer without copying them
to the screen. src can also be a pointer to a BitMap.

off_resize

Use off_resize to change the size of an Offscreen to match its associated GrafPort.

void off_resize (Offscreen *os);

os An Offscreen structure.

Call this routine when the user resizes a window containing an Offscreen.

Sprite Routines
Sprites are independent entities that draw an image inside a set rectangle. A Sprite
system is owned by an Offscreen object, so for example, there will be a different set
of Sprites for each active Graphics Window in Max. Each Sprite has a priority, which
is used to layer objects from front to back. Sprites can change their priority

Graphics Windows 174

dynamically. There is no set limit to the number of Sprites or different priority levels.
If two or more Sprites are at the same priority level, the one which joined the
Offscreen structure first will be drawn in front of the more recent arrival.

The Sprite structure is defined in ext_anim.h. You can get away with being ignorant of
the fields of a Sprite object, but it can be helpful in some circumstances, such as
knowing the Sprite’s rectangle.

typedef struct sprt {
struct object s_ob;
GrafPtr s_dest; /* screen dest */
Rect s_rect; /* rectangle */
BitMapHandle s_mask; /* mask */
RgnHandle s_rgn; /* mask rgn */
int s_number; /* sprite number (priority) */
char s_drawn; /* is it drawn */
char s_change; /* message to sprite proc to go to

"next" frame */
void *(*s_proc)(); /* procedure that draws */
long s_frame; /* current frame, used by s_proc */
long s_misc; /* used by s_proc */
void *s_assoc; /* an associated object */
OffScreen *s_owner; /* owning system */
struct sprt *s_prev; /* link */
struct sprt *s_next; /* link */

} Sprite;

All of the Sprite drawing routines discussed below (sprite_move, sprite_rect,
etc.) automatically redraw the other sprites on the screen if necessary when the
Offscreen owner of the Sprite’s destination GrafPort is visible.

sprite_new

Use sprite_new to create a new Sprite.

Sprite *sprite_new (t_object *assoc, Offscreen *owner,

long priority, Rect *frame,
ProcPtr *drawProc);

assoc A pointer to your object.

owner The associated Offscreen structure—where the Sprite will draw.

priority The Sprite’s priority number. 0 is the background and higher
numbers are more in the foreground.

frame The rectangle in which the Sprite will draw.

drawProc The function that draws the Sprite based on its current state. See
below for how to declare it.

This function creates a new Sprite object that will draw in the Offscreen environment
of owner. The draw procedure drawProc should be declared as follows:

Graphics Windows 175

void myObject_spritedraw (myObject *obj, Sprite *spr);

obj Your object.

spr The Sprite to draw.

In this routine, you can make normal Quickdraw calls (such as PaintRect) and the
image will be recorded Offscreen, then copied to its associated GrafPort at the proper
time to assure the layering of all the Sprites.

sprite_move

Use sprite_move to change a Sprite’s relative location.

void sprite_move (Sprite *spr, short deltaH, short deltaV);

spr The Sprite to move.

deltaH Horizontal distance in pixels to move the Sprite.

deltaV Vertical distance in pixels to move the Sprite.

This function moves a Sprite’s rectangle by deltaH pixels horizontally and deltaV
pixels vertically. The Sprite is erased at its old location and redrawn at the new
location. Any other Sprites affected by the move are also redrawn. If you want to
redraw your sprite at the same location but with a different appearance, you could
use:

sprite_move(mySprite, 0,0);

sprite_moveto

Use sprite_moveto to move a Sprite to a specific location.

void sprite_move (Sprite *spr, short h, short v);

spr The Sprite to move.

h New left coordinate of the Sprite’s rectangle.

v New top coordinate of the Sprite’s rectangle.

This function moves the Sprite’s rectangle to the specified location. The sprite is
erased at its old location and redrawn at the new location. Any other Sprites affected
by the move are also redrawn.

sprite_rect

Use sprite_rect to change a Sprite’s rectangle.

Graphics Windows 176

void sprite_rect (Sprite *spr, Rect *newRect, short change,
short next);

spr The Sprite whose rectangle you want to change.

newRect The new rectangle.

change Value to store in the Sprite’s s_change field that can be interpreted
by your Sprite’s drawing procedure in any way it wants.

next Value to store in the Sprite’s s_next field that can be interpreted by
your Sprite’s drawing procedure in any way it wants.

This function changes the Sprite’s rectangle to newRect and redraws it.

sprite_redraw

Use sprite_redraw to redraw a Sprite.

void sprite_redraw (Sprite *spr, short deltaH, short deltaV,
short change, short next);

spr The Sprite to redraw.

deltaH Horizontal distance in pixels to move the Sprite.

deltaV Vertical distance in pixels to move the Sprite.

change Value to store in the Sprite’s s_change field that can be interpreted
by your Sprite’s drawing procedure in any way it wants.

next Value to store in the Sprite’s s_next field that can be interpreted by
your Sprite’s drawing procedure in any way it wants.

sprite_redraw is like sprite_move, but also allows you to set the change and next
fields of the Sprite.

sprite_erase

Use sprite_erase to erase a Sprite.

void sprite_erase (Sprite *spr);

spr The Sprite to erase.

This function erases a Sprite, filling in any other Sprites which may have been
lurking behind it.

sprite_newpriority

Use sprite_newpriority to change the priority of a Sprite.

Graphics Windows 177

void sprite_newpriority (Sprite *spr, long priority);

spr A Sprite.

priority The Sprite’s new priority. 0 is background and higher numbers are
increasingly in the foreground.

This function assigns a new priority to a Sprite and redraws all the elements of the
Offscreen structure that owns the Sprite necessary to reflect the change in priorities.

A Sprite Example

The following example includes the key methods of an object that draws ovals using
Sprites. It shows several useful techniques, such as isolating the data structures used
for drawing in a Qelem from those changed in int methods.

This object has four inlets, for each coordinate of an oval’s rectangle. The data
structure is defined as follows:

typedef struct oval {
struct object o_ob;
long o_priority; /* sprite priority */
Sprite *o_sprite; /* the sprite */
Rect o_bounds; /* where it is */
Rect o_dbounds; /* where it is drawing */
void *o_qelem; /* Qelem */
t_symbol *o_sym; /* symbol of GWind */

} Oval;

Here’s the Initialization routine:

void main(void *p)
{

setup((t_messlist **)&OvalClass, oval_new, oval_free,
 (short)sizeof(Oval), 0L, A_SYM, A_LONG, A_DEFLONG,

A_DEFLONG, A_DEFLONG, A_DEFLONG, 0);
addint(oval_int);
addinx(oval_in1,1);
addinx(oval_in2,2);
finder_addclass("Graphics","oval");

}

Here is the object’s instance creation function. Note that its Sprite isn’t created until
it’s needed, within the queue function oval_qfn. We always reference the GWind
through a Symbol each time we draw, since we have no guarantee the GWind is still
around when we want to draw in it.

void *oval_new(t_symbol *windName, long priority, long left, long top,
long bottom, long right)

{
Oval *x;

Graphics Windows 178

x = (Oval *)newobject(OvalClass);
intin(x,3);
intin(x,2);
intin(x,1);
SetRect(&x->o_bounds, (short)left, (short)top,
 (short)bottom, (short)right);
x->o_dbounds = x->o_bounds;
x->o_sym = windName;
x->o_priority = priority;
x->o_qelem = qelem_new(x,oval_qfn);
x->o_sprite = 0;
return (x);

}

Here are the int methods. These set the coordinates of the o_bounds rectangle and
the leftmost one sets the Qelem to draw the oval. You can’t draw on the screen
directly in response to an int or bang message, since your method may be executing at
interrupt level.

void oval_bang(Oval *x)
{

qelem_set(x->o_qelem);
}

void oval_int(Oval *x, long left)
{

x->o_bounds.left = left;
oval_bang(x);

}

void oval_in1(Oval *x, long top)
{

x->o_bounds.top = top;
}

void oval_in2(Oval *x, long right)
{

x->o_bounds.right = right;
}

void oval_in3(Oval *x, long bottom)
{

x->o_bounds.bottom = bottom;
}

The queue function is where all the action is.

void oval_qfn(Oval *x)
{

GrafPtr gp;
t_gwind *it;

x->o_dbounds = x->o_bounds; /* make a copy of the new rect */

Graphics Windows 179

it = gwind_get(x->o_sym);

if (!it || !(gp = gwind_setport(it))) {
/* doesn’t exist or not visible? */

return;
}
if (it->g_off) { /* if there’s an Offscreen */

if (!x->o_sprite) /* need to make a new Sprite? */
x->o_sprite = sprite_new(x,it->g_off,x->o_priority,

&x->o_dbounds,oval_spritedraw);

sprite_rect(x->o_sprite,&x->o_dbounds,0,0); /* draw */
}
SetPort(gp);

}

Here is the Sprite’s drawProc. Note that we get the drawing bounds from the
Sprite’s rectangle s_rect. This isn’t necessary, but ensures that you’ll always be
drawing where the Sprite thinks you’re supposed to be drawing.

void oval_spritedraw(Oval *x, Sprite *s)
{

EnterCallback();
x->o_dbounds = s->s_rect;
PaintOval(&x->o_dbounds);
ExitCallback();

}

Finally, here’s the object’s free function.

void oval_free(Oval *x)
{

EnterCallback();
qelem_free(x->o_qelem);
if (x->o_sprite)

freeobject(x->o_sprite);
ExitCallback();

}

This example should demonstrate how to draw things in GWinds with Sprites. The
actual Max oval object is a bit more complicated than this one (it can draw in different
shapes and colors) but the Sprite techniques it uses are identical to those presented in
this example.

Writing Objects for the Timeline 180

The Max Timeline object is, at the most basic level, a system for sending messages at
pre-determined times. The Timeline consists of an editing window of events and
numerous auxiliary objects that allow communication between Patchers and the
events in the window.

There are several ways in which an external object can extend the capabilities of the
Max Timeline object. First, you can write an object that resides inside a patcher that is
used as a Timeline action. An example is the external object tiCmd, the source for
which is distributed in the SDK. This object “registers” itself with the Timeline,
which causes it to receive data held in the events in a Timeline track. It then passes
the data to other Max objects via its outlets.

Another possibility is an object that controls a Timeline, such as the objects
thisTimeline and thisTrack. Here, it is just a matter of looking for an object bound to a
specific symbol when your object is created. Then you can send this object messages
to control it. A third opportunity is to write an external that is itself an Action. This is
similar to writing an object like tiCmd but involves an extra step of displaying an icon
in the Timeline window and, optionally, some type of configuration window or
dialog when the user double-clicks on this icon. The key thing to note about all the
work needed to make an object that interfaces with the Timeline described in this
section is that all these features can be added to an existing normal object. If the
object is not being used in the context of the Timeline, the object can be written so
that it still does something and its Timeline interface is disabled.

The next chapter describes the process of writing an Editor object for the Timeline.
Editors are specific to the Timeline world and cannot lead a double life as a user
interface object in a Patcher window. However, the way an Editor works will seem
familiar to anyone who has written a user-interface object for the Patcher.

Registration
The key concept in writing an object that interfaces to the Timeline is that of
registration, which is the process of advertising that your object accepts a certain
symbol as a message. After having registered one or more messages, the timeline
knows enough to guide the user into making events that will send to your object only
those messages for which it has registered.

Registration is performed in your object creation function using the routine
message_patcherRegister (if your object is loaded directly as an Action, it uses
message_register, to be discussed later). You can register for more than one
message. In your object free function, you must unregister every message that you’ve

C H A P T E R 13

Writing Objects for the Timeline

Writing Objects for the Timeline 181

registered using message_patcherUnregister. This will disconnect your object
from any Timeline Events that could potentially send it a message.

Each message you register has two important components. The first is the message
name, which determines the symbol that an Event will send back to you. This can be
any symbol and will be descriptive of a command or parameter. In the tiCmd object,
the message name is passed as an argument. The second important component is the
message data type. This is also a symbol, but it determines the sort of Editor that can be
used to display the Event that will hold the message in the Timeline window. It also
determines the arguments to the message your object will receive when time passes
by the left edge of an Event in the Timeline. Several standard Editors are included in
the Timeline object, as well as a few external object editors. The standard message
box edits the generic data type message, and the Timeline version of the number box
edits either int or float data types. The external editors etable and efunc edit int data
types, and the external editor edetonate edits the list data type.

As an example, if you make an object with int as its message data type, the user will
have a choice, assuming the standard configuration, of making an event with either
the int, efunc or etable editors. It is important to understand the difference between a
message and a data type. The data type does not determine the format of the message
you will receive. All messages from the timeline to your object are sent by the
function typedmess, which will respect the argument list you provide to the
addmess function. While is true that an editor for the int data type will always send a
message that contains one integer as an argument, other data types can be defined by
your own convention.

A final option in message registration is to provide a receiver name for your message.
The movie object does this when it registers the start message for the movie data type.

As with any other specification of a message in an external object, you need to write
some method that is bound to the symbol you have registered, or provide an anything
method. If you’ve registered a message foo with a data type of int, you can write the
accompanying method as:

void myobject_foo (myObject *x, long n);

…and binding it at initialization time with:

addmess(myobject_foo, "foo", A_LONG, 0);

Other data types with multiple message arguments will often use the A_GIMME
form.

eventEnd

The eventEnd message is sent by the message editor when time passes the trailing edge
of its event rectangle.

BINDING

addmess (myobject_eventEnd, "eventEnd", A_CANT, 0);

Writing Objects for the Timeline 182

DECLARATION

void myobject_eventEnd (myObject *x, t_symbol *message);

message The same message that was sent by the message editor when time
passed the leading edge of this event.

Don’t confuse this eventEnd message sent by the message editor with the eventEnd
message that the Timeline sends to editors. The message editor’s eventEnd message is
in fact its response to receiving an eventEnd message from the Timeline.

message_patcherRegister

Use message_patcherRegister to register your object for a particular message
and data type.

void message_patcherRegister (t_symbol *message,

t_symbol *dataType,
t_object *theObject,
t_symbol *objectName,
t_patcher *p);

messsage The message your object wants to receive. This will appear in the
pop-up menu when the user makes a new event in a Timeline track.

dataType A standard message data type: int, float, or the generic message.
This determines the editor that can display the data sent to your
object in the Timeline window.

theObject A pointer to your object, or the receiver of this message.

objectName If your object doesn’t have a name, pass 0L, otherwise pass a
symbolic name for your object. A Timeline editor will receive this
name but would have to be specially written to pass the name back
to you.

p Your object’s parent patcher, bound to the symbol #P in your
instance creation function. You should save the patcher value in
your object because you will need it to unregister the message when
your object is freed.

For objects created in a patcher that is being used as a Timeline Action, this function
registers a message that can be sent to the object from the Timeline. It is normally
called in your object’s instance creation function. If the patcher p is not connected to a
Timeline, message_patcherRegister will do nothing.

Here is an example of registering a message foo of data type int using
message_patcherRegister.

message_patcherRegister(gensym("foo"), gensym("int"), myObject, 0L,
myObject->m_patcher = gensym("#P")->s_thing);

Writing Objects for the Timeline 183

message_patcherUnregister

Use message_patcherUnregister to unregister an object previously registered
with message_patcherRegister.

void message_patcherUnregister (t_symbol *message,

t_symbol *dataType,
t_object *theObject,
t_symbol *objectName,
t_patcher *p);

messsage The message your object registered.

dataType A standard message data type: int, float, or the generic message.

theObject A pointer to your object, or the receiver of this message.

objectName The objectName argument you passed to
message_patcherRegister.

p Your object’s parent patcher, bound to the symbol #P in your
instance creation function.

This function expects the same arguments that were previously passed to
message_patcherRegister. It removes all references to the message message of
data type dataType to sent to the object theObject from the track connected with
the patcher p so that when the Timeline plays no such messages will be sent. You
must balance each call to message_patcherRegister with a call to
message_patcherUnregister. If the patcher p is not connected to a Timeline,
this function does nothing.

Writing an Action External
Instead of loading a patcher to use as an Action, a Timeline user can place an external
object in the tiAction folder and choose it from the Track menu. Such an object could
also be usable as a normal patcher object. To think of it another way, it is possible to
add the Action capability to an existing external object. The additional steps for
writing an Action external is relatively simple. In general the concept is similar to the
Timeline-compatible external objects discussed above: you write methods bound to
symbols with addmess, then register these symbols with the Timeline.

The first additional step is to check to see if something is bound to the symbol #A in
your object creation function. If there is, it will be a pointer to the Timeline track for
which your external object is an Action. You will need to pass this value to the
function message_register—analogous to message_patcherRegister for
Actions without a patcher.

Next, you must implement a method to respond to the actionIcon message to display
an icon for your action in the Timeline window.

Writing Objects for the Timeline 184

actionIcon

The actionIcon message is a request by the Timeline to draw an icon representing your
action.

BINDING

addmess (myobject_actionIcon, "actionIcon", A_CANT, 0);

DECLARATION

void myobject_actionIcon (myObject *x, Rect *drawHere);

drawHere Draw something icon-like within this 16x16 pixel rectangle.

message_register

Use message_register to register a message for an Action object.

void message_register (t_symbol *message,

t_symbol *dataType,
t_object *theObject,

t_symbol *objectName,
void *track);

messsage The message your object wants to receive. This will appear in the
pop-up menu when the user makes a new event in a Timeline track.

dataType A standard message data type: int, float, or the generic message.
This determines the editor that can display the data sent to your
object in the Timeline window.

theObject A pointer to your object, or the receiver of this message.

objectName If your object doesn’t have a name, pass 0L, otherwise pass a
symbolic name for your object. A Timeline editor will receive this
name but would have to be specially written to pass the name back
to you.

track Your object’s parent track, bound to the symbol #A in your instance
creation function. You should save this value in your object because
you will need it to unregister the message when your object is freed.
If the value bound to #A is 0, you should not call message_register.

This function registers a message for an instance of an object that is an Action.

message_unregister

Use message_unregister to unregister an object previously registered with
message_register.

void message_unregister (t_symbol *message,

t_symbol *dataType,

Writing Objects for the Timeline 185

t_object *theObject,
t_symbol *objectName,
void *track);

messsage The message your object registered.

dataType A standard message data type: int, float, or the generic message.

theObject A pointer to your object, or the receiver of this message.

objectName The objectName argument you passed to
message_patcherRegister.

track Your object’s parent track, bound to the symbol #A in your instance
creation function.

This function shold be called in your instance free function for all messages
previously registered with message_register.

Writing Editors for the Timeline 186

The Timeline window has a similar structure to the Patcher window. A Timeline
object holds a linked list of a data structure called an Event, analogous to a Box in the
Patcher. Events hold both the data (time-tagged messages) in the Timeline and refer
to the objects that know how to edit and display it. Each Event is the header of an
instance of a special type of Max object known as an Editor, just as each Box is the
header of a user interface object. In fact, the Event borrows a number of fields from
the t_box structure—which allows certain Patcher window routines to be used in
the Timeline object. Many of the same concepts used in Patcher user interface objects
apply to writing Editors for the Timeline, although it is somewhat awkward to
combine both roles in the same external object (and the exact techniques for doing it
are not discussed here).

Registering A Timeline Editor

Essentially, there are three basic steps to writing an Editor. First, there is the process
of registering the Editor for one or more data types in the initialization routine. Next,
you must initialize the Event structure when a new instance of your object is created.
And finally, messages to support the required and optional messages for Timeline
Editors must be written. These messages concern drawing, user interaction, sending
the data to the objects in Actions linked to the Timeline window, and saving the
Event’s data in a Timeline file.

The first step in creating an editor object that works with the Timeline is to connect it
with particular dataTypes that you can edit using editor_register.

editor_register

Use editor_register to register an editor for a particular data type.

void editor_register (t_symbol *dataType, t_symbol *name
method new, method menu, method update);

dataType The type of data your editor can edit and display. You can invent
any name you like for a data type, but your editor will never be
usable in the Timeline window unless there is an object in an Action
that can register a message of this type. Editors currently exist for
the data types int, float, list, and the generic type message.

name The name of your editor, used to identify it when saving a Timeline
file and in the new event pop-up menu when multiple editors exist
for the same dataType.

C H A P T E R 14

Writing Editors for the Timeline

Writing Editors for the Timeline 187

new Method for making a new event from a file. Described in the
instance creation section below.

menu Method for making a new event from a new event pop-up menu.
Described in the instance creation section below.

update Method for updating an event. Described in the messags section
below.

In your editor object’s initialization routine, after calling setup to initialize your
class, you call editor_register to make the existence of your editor known to the
Timeline object. The Timeline classifies editors by data type, which is a symbol that
describes a type of message that the Editor would send to an object at any particular
moment in time. The QuickTime movie Editor invented a type called movie that is
used in conjunction with the revised Max movie object that works in the context of
the Timeline. Your editor can register for multiple data types, and when new
instances are created, your object is told what data type the instance requires.

Editor Instance Creation and the Event Structure
Your Editor object must begin with the Event data structure (declared in the include
file ext_event.h):

typedef struct myEditor {
Event m_event;
...rest of your editor fields here

} myEditor;

This structure holds the location of the Editor instance in the timeline window as
well as other information needed by both the Timeline object and your object. Here is
a description of each of the fields in an Event.

typedef struct event {
t_object e_obj;
struct smallbox *e_box; Pointer to Smallbox (or Box) that holds the

rectangle.
struct event *e_upd; Update list link (used internally for spooling

events).
Rect *e_rect; Pointer to rectangle within e_box.
struct event *e_next; Linked list of Events in the Timeline Track.
void *e_track; Pointer to owning Track.
struct oList *e_assoc; List of associated objects (internal use).
t_object *e_o; Pointer to object in unitary receiver case.
t_symbol *e_label; Descriptive text for Event locate pop-up menu.
long e_start; Event start time (in milliseconds).
long e_duration; Event duration (in milliseconds).
t_symbol *e_dataType; Data type of the message.
t_symbol *e_message; Message selector that is sent.
t_symbol *e_editor; Editor name.
struct editor *e_edit; Internal information about the Editor.
void *e_saveThing; Internal temporary variable.
void *e_thing; Internal unused variable.

Writing Editors for the Timeline 188

short e_wantOffset; If the track containing the editor has been
collapsed, this field stores the previous vertical
offset of the Event’s rectangle from the top of the
track.

Boolean e_active; Currently unused.
Boolean e_preview; Should be non-zero, not currently used.
Boolean e_constantWidth; If this flag is non-zero, the Event’s duration is

recalculated so that the Event rectangle stays the
same width at every scale change. This mode is
used by the Number box editor.

Boolean e_editable; Flag is non-zero if clicking on the Event modifies its
contents.

Boolean e_smallbox; Flag is non-zero if the Event uses the Smallbox data
structure (defined in ext_user.h) rather than the
Box data structure. Only the Number box editor
currently uses the Box data structure in order to
reuse code from the Number box user interface
object.

} Event;

Your editor’s instance creation function is responsible for initializing the Event’s data
structures. To do this it calls event_new and event_box. The first several
arguments to the Event’s object creation function are standardized (by convention)
and many of these can be directly passed to the two Event initialization functions.
The Event’s instance creation function should be of the following form:

void *myEditor_new (t_symbol *dataType, short argc,
t_atom *argv);

dataType The data type for the event being created. If your Editor object has
only registered for one data type, you won’t need to pay too much
attention to this argument, although you should pass the argument
to event_new rather than a hard-coded pointer to the Symbol
under which you registered.

argc Count of Atoms in argv.

argv An array containing the following data:

Index Constant Description

0 ED_TRACK Pointer to the Event’s parent Track (A_OBJ)
1 ED_MESSAGE Symbol that specifies the message you’ll send to an

Object when the Timeline tells you to (A_SYM)
2 ED_START Start time of the Event in milliseconds (A_LONG)
3 ED_DURATION Duration of the Event in milliseconds (A_LONG)
4 ED_TOP Top of Event rectangle in the Track (A_LONG)
5 ED_BOTTOM Bottom of Event rectangle in the Track (A_LONG)

There may be additional arguments (if argc is greater than 6) that are your own
user-defined parameters, including the contents of the Event message data.

Writing Editors for the Timeline 189

event_new

Use event_new to initialize an Event.

void event_new (Event *evnt, void *track, t_symbol *dataType,

t_symbol *message, t_symbol *editor,

t_symbol *label, long start, long duration,
long flags, t_box *box);

evnt The Event to initialize. It should be a pointer to your object, since it
begins with an Event header.

track Pass the a_w.w_obj field of the ED_TRACK argument received by
your instance creation function.

dataType Pass the dataType argument passed to your instance creation
function.

message Pass the a_w.w_sym field of the ED_MESSAGE argument received
by your instance creation function.

editor The name of your editor, the same Symbol passed to
editor_register.

label Any text; often the same Symbol passed as the editor argument is
used here.

start Pass the a_w.w_long field of the ED_START argument received by
your instance creation function.

duration Pass the a_w.w_long field of the ED_DURATION argument
received by your instance creation function.

flags See the constants listed below.

box This argument is 0L if you are using the normal Smallbox structure
to hold the Event display information. If the argument is non-zero,
a Smallbox is not allocated. Instead, an already allocated and
initialized Box you pass is used instead. You’re responsible for
freeing this Box when your free function is called. If you pass 0L,
the memory used by the Smallbox is freed for you.

This function initializes most of the fields of an Event (like box_new, it is passed an
existing Event, it does not create one). The constants for flags are:

#define F_GROWY 2 Can grow in y direction by dragging,
appropriate for text-based objects

#define F_GROWBOTH 32 Can grow independently in both x and y
dimensions

#define F_CONSTANTWIDTH 16 Duration is sensitive to display scaling,
sets the flag e_constantWidth in the
Event structure

You should use either F_GROWY or F_GROWBOTH, and optionally
F_CONSTANTWIDTH.

Writing Editors for the Timeline 190

event_box

Use event_box to set the rectangle of an Event.

void event_box (Event *evnt, short top, short bottom);

evnt A pointer to your object.

top Pass the a_w.w_long field of the ED_TOP argument received by
your instance creation function.

bottom Pass the a_w.w_long field of the ED_BOTTOM argument received
by your instance creation function.

Editor Instance Creation Example

This function initializes the Event rectangle, about which more will be said shortly. It
must be called after event_new so that the start and duration values can be used to
calculate the current position of the Event rectangle.

Here’s a standard implementation of the instance creation function showing the use
of event_new and event_box. Here we’re initializing an Event for an editor whose
name is the same as the data type that uses the standard Smallbox.

void *myEditor_new(t_symbol *dataType, short argc, t_atom *argv)
{

MyEditor *x;

x = (MyEditor *)newobject(myEditor_class); /* create instance */

/* initialize the Event */
event_new((Event)x, /* event */

(void *)argv[ED_TRACK].a_w.w_obj, /* track */
dataType, /* data type */
argv[ED_MESSAGE].a_w.w_sym, /* message */
dataType, /* editor name */
argv[ED_MESSAGE].a_w.w_sym, /* label */
argv[ED_START].a_w.w_long, /* start */
argv[ED_DURATION].a_w.w_long, /* duration */
(long)F_GROWY | F_CONSTANTWIDTH, /* flags */
0L); /* box */

event_box((Event)x,
(short)argv[ED_TOP].a_w.w_long, /* top */
(short)argv[ED_BOTTOM].a_w.w_long); /* bottom */

/* do other initialization here */

return (x);
}

Writing Editors for the Timeline 191

Editor Menu Function

This function, having been supplied to editor_register at initialization time, is
called when the user creates a new event in a Timeline Track.

void *myEditor_menu (t_symbol *dataType, t_symbol *message,

void *track, void *obj, long start,
Point pt);

dataType The data type your editor has registered to edit. Pass this to your
instance creation function.

message The message for this event. Pass this to your instance creation
function.

track Parent track holding the event. Pass this to your instance creation
function.

obj Receiver of the messages sent by this event. In most cases, you can
ignore the obj argument, since it will also be passed to your editor
when it receives the eventStart and eventEnd messages. However, if
your editor will be displaying data that is contained in the object, it
will be important to store this reference. The QuickTime movie
editor stores this information because it needs to access the movie
stored in the Max movie object in order to display its thumbnails.

start Start of this event (in milliseconds).

pt Location where the user clicked to place this event. It should be the
upper left-hand corner of your event rectangle.

This function, having been supplied to editor_register at initialization time, is
called when the user creates a new event in a Timeline Track. The menu function
must return the result of the creation routine: either a pointer to the newly created
object or 0 if there was an error in creating it.

Typically, in the menu function you will assemble an array of Atoms to pass to your
object’s creation routine. This array will take the same argument format as the
creation function would receive directly from the timeline object when a file is being
read in. Here is an example of a typical menu function for an Editor that deals with a
message for a data type of int. The constants used are declared in timelineEvent.h.

void *myEditor_menu(t_symbol *dataType, t_symbol *message,
void *track, void *obj, long start, Point pt)

{
MyEditor *x;
long dur;
t_atom a[18];

SETOBJ(a + ED_TRACK,(void*)track); /* event’s track */
SETSYM(a + ED_MESSAGE,message); /* event’s message */
SETLONG(a + ED_START,start); /* event start */
dur = track_pixToMS(track,132);
SETLONG(a + ED_DURATION,dur); /* event duration */
SETLONG(a + ED_TOP,(long)pt.v); /* box top */

Writing Editors for the Timeline 192

SETLONG(a + ED_BOTTOM,(long)pt.v+64); /* box bottom */

x = myEditor_new(dataType,6,a);
return (x);

}

event_spool

Use event_spool to cause an Event to be redrawn.

void event_spool (Event *evnt);

evnt Event to be redrawn.

Call event_spool after making changes that would affect the appearance of an
event. You need not do this in your instance creation routine. Note that if you just
want to redraw the state of your object in a function outside of the context of the
standard Editor messages, you can call event_spool without needing to do any of
the setup discussed in the section above.

Messages Sent to Editors By the Timeline
In order to have a working editor, you must implement the psave, eventStart, and
update messages. The concepts behind most of these messages is quite similar to
those used for writing user interface objects for the patcher. This section describes
each message, along with the Timeline routines that will be useful in writing a
method to respond to the message.

psave

The psave message is sent when your editor needs to save an event.

BINDING

addmess (myobject_psave, "psave", A_CANT, 0);

DECLARATION

void myobject_psave(myObject *x, Binbuf *dest);

dest The Binbuf where you should write out a message to save your
object.

This message is sent to your object to save its contents when an event is being copied
or a Timeline file is being saved. The first nine arguments that you must save are
standard for every Event, and can be placed in an array of Atoms for you with the
function event_save. After that, you can put additional data needed to restore your
Editor instance. You then pass this array to binbuf_insert using dest as the first
argument. See the example after the description of the event_save function. Note

Writing Editors for the Timeline 193

that the arguments to the psave method are the same as for the Patcher user interface
object case and the method for the save message for normal objects.

eventStart

The eventStart message is sent when time passes over the left edge of your Event’s
rectangle.

BINDING

addmess (myobject_eventStart, "eventStart", A_CANT, 0);

DECLARATION

void myobject_eventStart(myObject *x, t_object *receiver);

receiver An object inside an Action Patcher or an Action External that has
been linked to your editor. You should send it the data your editor
contains. See the example below.

This message may be sent to you at interrupt level; therefore the usual restrictions on
the behavior of your method apply. For an Editor object that holds a single data
element, the usual implementation of eventStart involves sending a message to the
receiver argument. For a more complex object that will schedule a series of events
over the duration of the Event, a call to a Timeline-relative scheduling facility is
made. First let’s look at how the simple case is implemented. The following eventStart
method sends a single integer to a receiver. This is similar to the implementation
used by the Number box Editor for the int data type. Note that it does not send the
message selector int to the receiver but rather uses the e_message field of the Event.

void myNumberEditor_eventStart(MyEditor *x, t_object *receiver)
{

t_atom val;

val.a_w.w_type = A_LONG;
val.a_w.w_long = x->m_value;
typedmess(receiver,x->m_event.e_message,1,&val);

}

event_save

Use event_save to prepare the first nine arguments of an Event for saving.

void event_save (Event *evnt, t_atom *buf);

evnt Event to be saved.

buf Array of at least nine Atoms where event_save will place the
standard information needed for saving an Event.

This function copies the standard first nine items of an Event to an array of Atoms so
you need not worry about the details of saving the Event data structure. Here’s an

Writing Editors for the Timeline 194

example implementation of a psave method that uses event_save and then adds an
additional piece of data before calling binbuf_insert.

void myEditor_psave(MyEditor *x, void *buf)
{

t_atom buffer[10];

event_save((Event)x,buffer);
SETLONG(buffer+9,x->m_value);
binbuf_insert(buf,0L,10,buffer);

}

Scheduling Events

Now, let’s imagine we’re writing an Editor for an object that holds four integer
values that will be sent out over the duration of an Event, as follows:

1 2 3 4

event rectangle

The Timeline object knows nothing about the internal structure of an Editor, so it
won’t automatically call our eventStart function for the last three messages we want to
send. And we can’t just create a Clock to schedule these events, since the “current
time” used by the Timeline object is not simply the time of the internal Max
scheduler, but can be manipulated by other processes. Even in the simplest case, we
would want these messages not to be sent if the user stops the Timeline from playing
in the middle of the Event. To handle these situations, the Timeline object keeps an
internal list of tasks to do that are scheduled to occur at Timeline-relative times. You
put tasks on this list by using the function event_schedule.

event_schedule

Use event_schedule to schedule a message for a later Timeline-relative time.

void event_schedule (Event *evnt, method fun,

t_object *receiver, void *arg,
long delay, long flags);

evnt Event scheduling this function.

fun Function you want to be called when the Timeline reaches the
specified time. See below for how to declare this function.

receiver The receiver of the message you’ll be sending.

arg Any additional argument that will be passed to your function.

Writing Editors for the Timeline 195

delay The delay, in timeline “milliseconds,” until the function should be
called.

flags Optionally, one of the following constants. Either L_DIEONSTOP (1)
if the function should not be called if the Timeline stops before time
reaches the specified point, or L_MUSTHAPPEN (2) if the function
should be called even if the Timeline stops before time reaches the
specified point. Generally, the latter is used when scheduling things
like MIDI note-off messages.

Here is the implementation of sending the four evenly spaced messages based on the
duration of an Event that uses event_schedule. Assume that the four integer
values are stored in an array m_values. To know which message we’re sending we
need a counter into this array m_counter.

The implementation consists of two functions, one that responds to the message
eventStart that sends out the first value and the other that is scheduled by
event_schedule that sends the other three.

void myEditor_eventStart(myEditor *x, t_object *receiver)
{

t_atom at;

at.a_w.w_long = x->m_values[0]; /* send first value */
at.a_type = A_LONG;
typedmess(receiver,x->m_event.e_message,1,&at);
x->m_delay = (long)((double)x->m_event.e_duration/3.0);

/* calculate interval between events */
x->m_counter = 1; /* next value to send */
event_schedule(x,myEditor_tick,receiver,0L,x->m_delay,

(long)L_DIEONSTOP);
}

void myEditor_tick(myEditor *x, t_object *receiver)
{

t_atom at;

at.a_w.w_long = x->m_values[x->m_counter++]; /* send next value */
at.a_type = A_LONG;
typedmess(receiver,x->m_event.e_message,1,&at);
if (x->m_counter < 4) /* reschedule */

event_schedule(x,myEditor_tick,receiver,0L, x->m_delay,
(long)L_DIEONSTOP);

}

update

The update message is sent when your editor should redraw an Event.

BINDING

addmess (myobject_update, "update", A_CANT, 0);

Writing Editors for the Timeline 196

DECLARATION

void myobject_update (myObject *x, Rect *updateBox,
Boolean preview);

updateBox The part of the Event’s rectangle to redraw. This may not be your
entire Event rectangle.

preview Currently always non-zero. If zero, it indicates you should draw
your object in a faster way.

This message is sent when you’re Editor is to draw its data in the Timeline window.
One difference between the update message in the Timeline context and the one in the
Patcher window is that you are passed an update rectangle updateBox which
covers the area of the window being updated. If only a part of your Event rectangle
intersects the updateBox, you can avoid drawing all of your data, speeding up the
drawing of the Timeline window. It is especially critical to pay attention to the
updateBox if your object draws its data slowly (as is the case with the QuickTime
movie editor). If your object’s Event rectangle is entirely outside of an area of the
Timeline window being drawn, your object’s update method will not be called.

When the update method is called, the Event rectangle (*e->e_rect, note that it is a
pointer, unlike the Box rectangle), has been properly offset so that you can draw into
it. However, be careful not to draw outside of the rectangle or the updateBox. You
need not draw the rectangle frame, just the contents. If you calculate any internal
variables based on the size of the rectangle, be prepared for the size to change
between update messages (for example, when the user zooms in or out). Generally,
you should always check for a change of the rectangle’s size in the update method
before drawing.

info

The info message is sent when your event is selected and the user chooses Get Info…
from the Max menu.

BINDING

addmess (myobject_info, "info", A_CANT, 0);

DECLARATION

void myobject_info (myObject *x);

If you bind a method to the info message, the Get Info... item in the Max menu will
automatically be enabled when your object is selected. Typically, you will put up a
dialog box allowing the user to change some aspect of the data stored in the editor or
parameters of the editor’s display. Note that if the dialog box changes the appearance
of your Event, you must tell the Timeline object to redraw it by calling
event_spool.

Writing Editors for the Timeline 197

event_avoidRect

Use event_avoidRect to position a dialog box relative to your Event.

void event_avoidRect (Event *evnt, short dialogID);

evnt Your Event.

dialogID Resource ID of a DLOG resource. event_avoidRect will modify
the resource’s dialog window rectangle.

Analogous to patcher_avoidbox, event_avoidRect changes the coordinates of
a dialog box so that will be positioned, when possible, directly below the Event being
edited. If your Editor uses a dialog box in its info method, use event_avoidRect
before calling GetNewDialog.

dblclick

The dblclick message is sent when the user double-clicks on your event.

BINDING

addmess (myobject_dblclick, "dblclick", A_CANT, 0);

DECLARATION

void myobject_dblclick (myObject *x, Point pt, short mods);

pt Location of the double-click.

mods The modifers field of the EventRecord returned by GetNextEvent
for this mouse click event, indicating whether the shift, option,
command, caps lock, or control keys were pressed.

This message is sent to your editor when the user double-clicks on the Event
rectangle. If your object displays or edits data in an auxiliary window, you could
display the window in response to this message.

Messages for Editors of Editable Events
An Editor can edit the data contained in an Event directly in the Timeline window, in
an auxiliary window, or not at all. Examples of the first type of Editor are the
message box, the number box, and the efunc editor for the funbuff object. Examples
of the second type are etable and edetonate, and an example of the third is emovie.
If an editor responds to either the click or key messages, the Timeline treats its events
as “editable” and allows mouse clicks within the Event rectangle to be passed to the
Editor, rather than used for dragging the Event around in the Track to change its
start time or vertical position.

Note that the names given to the messages idle, click, and key are the same messages
that an object would receive were it to put up its own window. Thus, if you wish
your object to be editable and have its own auxiliary window, you must make the

Writing Editors for the Timeline 198

auxiliary window “owned” by another object. However, since the Max text editor
window belongs to its own instance of the t_ed object class, it would be possible to
use a text editor as an auxiliary window for a Timeline editor without worrying
about these considerations.

The target event is the event that will receive keyboard input and thus must be
“editable” according to the criteria discussed above. If an event is the Target it can
also receive the click message. It can also handle menu commands such as cut, copy,
and paste if it defines these messages as well as a chkmenu message to enable them
(see the description of the chkmenu message in Chapter 10 above). Typically the
Target event is the last event that the user clicked on and selected. A Target event
will always have a marquee around it in the Timeline window.

idle

The idle message is sent to track the cursor when it is over your Event rectangle.

BINDING

addmess (myobject_idle, "idle", A_CANT, 0);

DECLARATION

void myobject_idle (myObject *x, Point pt, short *within);

pt Current location of the cursor in local coordinates.

within Set within to 1 if the mouse is within the “editing” portion of the
event rectangle and you therefore would like a mouse click in this
region to be passed to your editor in a click message. within should
be set to -1 if you have changed the cursor in this call to the idle
method and/or do not wish to receive the click message under any
circumstances. within should be set to 0 if you have not set the
cursor and wish to have the Timeline use its standard technique of
treating a mouse click in the Event rectangle. The standard
technique passes a click message to the Editor if the click was on the
border of the Event rectangle or one pixel in from the border. This
decision about what to do with a click on an event is made in the
Editor’s idle method immediately before the Editor would receive
the click message.

The idle message is sent to your object to track the cursor when it is within the Event
rectangle. You can change the cursor depending upon the location of pt or display
information in the legend with track_drawDragParam (see below).

Before sending you the idle message, the Timeline object adjusts your Event rectangle
so it is relative to the top of its window rather than the top of your Event’s track.

click

The click message is sent when the user clicks on your editable Event.

Writing Editors for the Timeline 199

BINDING

addmess (myobject_click, "click", A_CANT, 0);

DECLARATION

void myobject_click (myObject *x, Point pt, short dbl,
short modifiers);

pt Location of the mouse click in local coordinates.

dbl Non-zero if this is a double-click. Note that you will never receive a
dblclick message if your object responds to a click message.

modifiers The modifers field of the EventRecord returned by GetNextEvent
for this mouse click event, indicating whether the shift, option,
command, caps lock, or control keys were pressed.

An Editor receives this message when the user clicks or double-clicks in your Event
rectangle. There are numerous strategies for what to do in response to a click message.
If your object is a text editor, for example, it might call TEClick. If you will allow
editing the contents of an object by drawing, as with the editor efunc, you’ll use
wind_drag and supply it with a drag function as is done in Patcher user interface
objects.

Before sending you the click message, the Timeline object adjusts your Event rectangle
so it is relative to the top of its window rather than the top of the track. However, the
top and bottom of the Event rectangle will not be correct if you make a drag function
to handle continuous mouse movement in your object. In order to relocate it to
coordinates that reflect the screen, use the function event_offsetRect described
below. During this function you may find it useful to call the routine for Event
position conversation and drawing in the Timeline legend described below.

key

The key message is sent when the user presses a key when your Event is the Target
Event.

BINDING

addmess (myobject_key, "key", A_CANT, 0);

DECLARATION

void myobject_key (myObject *x, short key, short modifiers,
short code);

key ASCII code of the key pressed.

modifiers State of the modifier keys.

code Macintosh key code.

Writing Editors for the Timeline 200

selected

The selected message allows you to inform the Timeline about your selection state.

BINDING

addmess (myobject_selected, "selected", A_CANT, 0);

DECLARATION

void myobject_selected (myObject *x, short *state);

state Set state to 1 if your the data is entirely selected for editing (and
thus should be, for example, copied or duplicated as a whole). An
Editor that contained text for editing would set state to 0 if a
subset of its text were selected (or if no text were selected), but it
would set it to 1 if all the text were selected.

When your Editor receives this message you should set state according to the
criteria listed above. Often editors either do not allow a subset of their data to be
selected (such as efunc) or always edit it as a logical whole (such as the number box),
and these should always set state to 1.

Routines For Drawing in Editors
These routines are used to set up any drawing you might do in an editor in situations
such as a Qelem function or in a mouse drag tracking function called by wind_drag.

track_setport

Use track_setport to set the current GrafPort to the window containin a Timeline
track.

GrafPort *track_setport (void *track)

track An Event’s parent track (evnt->e_track).

This function is required when drawing out of the context of the standard Editor
messages. track_setport is analogous to wind_setport or patcher_setport.
Given a track it ensures that drawing will occur in the Track’s GrafPort. If
track_setport returns 0 it means that the Timeline window containing your
Event is not currently visible, and you should not draw anything. This situation is
entirely possible if the user has created a Timeline object within the context of a
patcher and closed the window. You should also check track_setport in your
instance creation function. If it returns a non-zero value, it is safe to draw or use
GrafPort-relative calls (such as TextWidth). If not, you need to defer such calls until
your Editor receives the first update message for this Event. When you are finished
drawing, pass the non-zero value returned from track_setport to the Macintosh
routine SetPort.

Writing Editors for the Timeline 201

event_offsetRect

Use event_offsetRect to adjust your event rectangle before drawing in it.

short event_offsetRect (Event *evnt)

evnt Your Event.

Before drawing in a non-standard situation, such as in a mouse tracking function
called from wind_drag or a queue function, you need to offset the Event’s rectangle
so that it is relative to the top of the window. event_offsetRect does this and
returns the value you can use as the vertical coordinate of the Macintosh routine
OffsetRect to restore the Event rectangle. Here is a typical use of
event_offsetRect:

short offset;

offset = event_offsetRect((Event *)x);
/* draw here */
OffsetRect(x->m_event.e_rect,0,-offset); /* must negate to restore */

track_clipBegin

Use track_clipBegin to restrict drawing to the current Track rectangle, in case
your event rectangle is partially hidden by a track boundary.

void track_clipBegin (void *track, Rect *clip);

track An Event’s parent track (evnt->e_track).

clip Where the current track rectangle will be placed. You can use this to
avoid drawing the portion of your event that is not visible by only
drawing what intersects clip.

Before drawing in your Event rectangle during a mouse tracking function called
from wind_drag, it is necessary to restrict your drawing to the current track
rectangle, since the Event may be partially outside the visible portion of a track. This
is done by framing all drawing with calls to track_clipBegin and
track_clipEnd. If you draw in any other situations where you are not receiving a
direct message listed above from the Timeline, such as in a queue function set by
your eventStart message, you must also use track_clipBegin and
track_clipEnd. Clipping has already been set to the track when your Editor
receives any of the standard set of messages described above (update, click, etc.) so
you need not use these functions at those time.

track_clipEnd

Use track_clipEnd to restore a clipping region set by track_clipBegin.

Writing Editors for the Timeline 202

void track_clipEnd (void *track);

track An Event’s parent track (evnt->e_track).

Mysterious things have been known to happen to drawing in the Timeline window if
each call of track_clipBegin isn’t matched with a call to track_clipEnd.

Using Editor Drawing Routines

The proper order for all of these setup routines is shown in this example:

void myEditor_draw (Event *e)
{

GrafPort *savePort;
Rect clipRect;
void *eventTrack;
short offset;

eventTrack = e->e_track;
if (savePort = track_setport(eventTrack)) {

offset = event_offsetRect(e);
track_clipBegin(eventTrack,&clipRect);

/* draw here */

track_clipEnd(eventTrack);
OffsetRect(e->e_rect,0,-offset);
SetPort(savePort);

}
}

Event Position Conversion Routines
These routines allow conversion between a x coordinate location in the Timeline
window and an event time.

track_pixToMS

Use track_pixToMS to convert a pixel distance in the Timeline window to a
millisecond time value.

long track_pixToMS (void *track, short pix);

track An Event’s parent track (evnt->e_track).

pix Pixel value you want converted to milliseconds.

Given a track and a distance in pixels in pix, track_pixToMS returns the number
of milliseconds currently associated with this number of pixels, according to the
Timeline’s current zoom level.

Writing Editors for the Timeline 203

track_MSToPix

Use track_MSToPix to convert a time value to a pixel distance in the Timeline
window.

short track_pixToMS (void *track, long time);

track An Event’s parent track (evnt->e_track).

time Time value in milliseconds you want converted to pixels.

Given a duration in milliseconds, track_MSToPix returns the number of pixels
currently associated with this duration, according to the Timeline’s current zoom
level.

track_posToMS

Use track_posToMS to convert from a location in the Timeline window to
milliseconds from the start of the Timeline.

long track_pixToMS (void *track, short pix);

track An Event’s parent track (evnt->e_track).

pix Pixel value you want converted to milliseconds.

Given a track and an x coordinate location, track_posToMS returns the event time
in milliseconds currently associated with this position, according to the Timeline’s
current zoom level.

track_MSToPos

Use track_MSToPos to convert a time value to a location in the Timeline window.

short track_MSToPos (void *track, long time);

track An Event’s parent track (evnt->e_track).

time Time value in milliseconds you want converted to pixels.

Given a track and an event time in milliseconds, track_MSToPos returns the
coordinate location on in the Timeline window associated with this time, according
to the Timeline’s current zoom level.

Writing Editors for the Timeline 204

Routines for Drawing in the Timeline Legend
These routines are used in a drag function set up by wind_drag, initiated in the
method that responds to a click message. They allow the user’s editing action
occurring within your Event rectangle to be guided in terms of its current time
position, or with any other sort of information. You can also call the routines during
an Event’s idle message for guidance in the style of the Patcher window’s assistance.
Each function takes a track argument that is used to access the Timeline window.

track_drawDragTime

Use track_drawDragTime to draw two numbers related to an Event.

void track_drawDragTime (void *track, long time1, long time2);

track An Event’s parent track (evnt->e_track).

time1 Number you want drawn on the left.

time2 Number you want drawn on the right.

This function accepts two values that are converted into a string according to the
current time format and displayed in the Timeline legend. Normally, it is used to
display begin and end times when dragging an event rectangle. The value time1 is
generally taken to be the left side of the item being moved and time2 is the right
side. If you only want to draw one value you can use track_drawTime.

track_drawDragParam

Use track_drawDragParam to draw a string describing an Event.

void track_drawDragParam (void *track, char *string);

track An Event’s parent track (evnt->e_track).

string C string containing information to display about the Event.

This function allows you to draw any character string in the legend portion of the
Timeline window to describe the current value of a parameter that might be
changing in response to an editing action within the Event rectangle. The efunc object
uses the routine to display the current X and Y value of a point being dragged.

track_drawTime

Use track_drawTime to draw a single value related to an Event.

void track_drawTime (void *track, long time);

track An Event’s parent track (evnt->e_track).

time Number to draw.

Writing Editors for the Timeline 205

This function draws a single time value in the legend portion of the Timeline
window.

track_eraseDragTime

Use track_eraseDragTime erase the Timeline window legend.

void track_eraseDragTime (void *track);

track An Event’s parent track (evnt->e_track).

This function erases anything drawn with any of the above three functions.

MSP Development Basics 206

The next few chapters describe how to write signal processing externals for Max
using the API of the MSP signal processing environment. MSP externals are very
similar to Max externals, but they have two additional features specific to signal
processing. One is the perform routine that performs signal processing on one or
more buffers of audio. MSP assembles calls to objects' perform routines into a DSP
call chain connected by signal buffers. The second additional method you need to
write, called when MSP builds the DSP call chain and sends your object the dsp
message, tells MSP the address of your perform routine and the arguments it
requires. We'll refer to it as the dsp method.

In addition to the perform and dsp methods, there are calls you need to make in the
initialization, new instance, and free routines. There are two sets of calls, depending
on whether you are writing a normal object or a user interface object. However,
there are no differences between normal and user interface objects in writing the dsp
and perform methods.

The MSP Library
The MSP functions described here reside in a shared library called Max Audio Library,
that in Max 4 / MSP 2 is included in the Max/MSP application. This shared library
exports a number of functions and globals used by signal processing objects. It
transforms a graph of signal objects into a series of function calls, handles audio I/O
and interfacing, and manages signal buffers.

Creating MSP Projects
In addition to your source file and any resource files you be using, you will need to
include the following files:

• MaxAudioLib stub library

• MaxLib stub library

• InterfaceLib stub library

• MathLib (or libmoto, if you want much faster but possibly 603-incompatible math
routines)

• MSL ShLibRuntime.Lib (MWCRuntime.Lib for CodeWarrior 5 and lower)

• SoundLib, if you use newer Sound Manager routines

While they are not always needed, there is no penalty for including MathLib and
SoundLib if they're not needed, so it's a good idea to include them.

C H A P T E R 1 5

MSP Development Basics

MSP Development Basics 207

Refer to Chapter 2 when creating a development project. However, it may easier to
modify a copy of one of the example MSP projects included in the software
development kit. Then all the right files are included and the settings will be correct
except for the name of your object in the settings for PPC Project. When creating your
own project (or extening an existing one), you should add the MSP includes folder
to the CodeWarrior Access Paths or MPW includes variables.

Project Resource File
In addition to the libraries listed above and the source files you write, a good citizen
MSP project will contain a resource file that contains at least two items. The first is
the STR# resource used by your object’s assist method (refer to chapter 5 if you are
not familiar with this), and a mAxL resource that contains a small amount of 68K
code. When loaded, this code reports that the object does not work on a 68K
processor. You can use the mAxL resource that does this very thing found in the file
nono.68K included in the MSP includes folder of the software development kit.
Open nono.68K in ResEdit and copy the mAxL resource to your project’s resource
file. Then select the resource in your project’s file and choose Get Resource Info…
from the Resource menu. The resource’s ID doesn’t matter, but the name must be
changed from “nono” to the name of your object. 68K Max finds your object using
the name of the mAxL resource.

Adding the mAxL resource allows your PowerPC object to be found when it is inside
a collective or a standalone application. If you look at a standalone application
created with MSP external objects, you’ll see a bunch of small mAxL resources, one
for each external that is included.

Writing MSP Code 208

This chapter covers the basic information you need to write an MSP external.

Include Files
For a typical MSP object, you should have the following at the beginning of your
source file.

#include "ext.h" // standard include file for Max externals
#include "z_dsp.h" // contains MSP info

The include file z_dsp.h references a number of other include files; they will be
mentioned when relevant below.

Defining Your Object Structure
An MSP object has a t_pxobject as its first field rather than t_object.
t_pxobject is a t_object with some additional fields, most notably a place for an
array of proxies, used to allow inlets to MSP objects to accept either signals or floats
as input. If you're not familiar with proxies, refer to Chapter 6 and the buddy
external object sample code. In general, MSP handles most of the details of using
proxies for you. User interface objects use a similar header, called a t_pxbox, that
combines the standard t_box user interface object header with the fields of a
t_pxobject. Both structures are defined in the include file z_proxy.h.

Here's an example declaration of an MSP external object:

typedef struct _sigobj {
t_pxobject x_obj; // header
float x_val; // additional fields

} t_sigobj;

Writing the Initialization Routine
The initialization routine sets up the class information for a Max external. In the call
to the setup function which initializes your class—generally the first thing you do in
any Max external—you should pass dsp_free as your free routine unless you need
to write your own free routine for memory you allocate in your new instance routine.
Here's an example for an object that doesn't allocate any memory and doesn't take
any initial arguments.

C H A P T E R 1 6

Writing MSP Code

Writing MSP Code 209

setup(&sigobj_class, sigobj_new, (method)dsp_free,
(short)sizeof(t_sigobj), 0L, 0);

After the call to setup, your initialization routine needs to bind your object's dsp
method (discussed below), using the A_CANT argument type specifier as follows:

addmess(sigobj_dsp, "dsp", A_CANT, 0);

You also need to call dsp_initclass to finish setting up your MSP external's class.

dsp_initclass

Use dsp_initclass to set up your object's class to work with MSP.

void dsp_initclass(void);

This routine must be called in your object's initialization routine. It adds a set of
methods to your object's class that are called by MSP to build the DSP call chain.
These methods function entirely transparently to your object so you don't have to
worry about them. However, you should avoid binding anything to their names:
signal, drawline, userconnect, and enable. This routine is for normal (non-user-
interface objects).

dsp_initboxclass

Use dsp_initboxclass to set up your user interface object's class to work with
MSP.

void dsp_initboxclass(void)

Call this routine in a user interface object's initialization (main) routine instead of
dsp_initclass. In addition adding the four methods bound to the names listed
above, dsp_initboxclass also uses the name bxdsp.

New Instance Routine
Typical Max new instance routines specify how many inlets and outlets an object will
have. An MSP signal object is no execption, but it uses proxies if you want more than
a single signal inlet. You specify how many signal inlets you want with the
dsp_setup call (or dsp_setupbox for user-interface signal objects). There is a
requirement that signal inlets must be to the left of all non-signal inlets. Similarly, all
signal outlets—declared simply with a type of "signal"—must be to the left of all non-
signal outlets.

Here is an example of the initialization routine for an object that has two signal inlets
and two signal outlets.

Writing MSP Code 210

void *sigobj_new(void)
{

t_sigobj *x;

x = newobject(sigobj_class);
dsp_setup((t_pxobject *)x,2); // set up object and inlets
outlet_new((t_object *)x,"signal"); // and outlets
outlet_new((t_object *)x,"signal");
return x;

}

Note that unlike the initialization routine in a typical Max object, the example routine
above doesn't store pointers to its outlets. An MSP object almost never directly
references its signal outlets. The MSP signal compiler accesses the outlets via the a
pointer to all your object’s outlets stored inside the t_object structure that begins all
Max objects.

dsp_setup

Use dsp_setup to initialize an instance of your class and tell MSP how many signal
inlets it has.

void dsp_setup(t_pxobject *x, short num_signal_inputs);

Call this routine after creating your object in the new instance routine with
newobject. Cast your object to t_pxobject as the first argument, then specify the
number of signal inputs your object will have. dsp_setup initializes fields of the
t_pxobject header and allocates any proxies needed (if num_signal_inputs is
greater than 1). Some signal objects have no inputs; you should pass 0 for
num_signal_inputs in this case. After calling dsp_setup, you can create
additional non-signal inlets using intin, floatin, or inlet_new.

dsp_setupbox

Use dsp_setupbox to initialize an instance of your user interface object class and
tell MSP how many signal inlets it has.

void dsp_setupbox(t_pxbox *x, short num_signal_inputs);

This routine is a version of dsp_setup for user interface signal objects.

Special Bits in the t_pxobject Header
There are three bits you can set in the t_pxobject or t_pxbox header that affect
how your object is treated when MSP builds the DSP call chain. The explanation of
these settings will make more sense once you have read more about the dsp and
perform methods, but they are explained here because you need to set them in your

Writing MSP Code 211

new instance routine. Both t_pxobject and t_pxbox contain a field called
z_misc; by default it is 0 meaning that all of the following settings are disabled.

#define Z_NO_INPLACE 1

If you set this bit in z_misc, the compiler will guarantee that all the signal vectors
passed to your object will be unique. It is common that one or more of the output
vectors your object will use in its perform method will be the same as one or more of
its input vectors. Some objects are unable to handle this restriction; typically, this
occurs when an object has pairs of inputs and outputs and writes an entire output on
the basis of a single input before moving on to another input-output pair.

#define Z_PUT_LAST 2

If you set this bit in z_misc, the compiler puts your object as far back as possible on
the DSP call chain. This is useful in two situations. First, your object's dsp routine
might require that another object's dsp routine is called first in order to work
properly. Second, if your object wants another object's perform routine to run before
its own perform routine. For example, to minimize delay times, a delay line reading
object probably wants the delay line writing object to run first. However, setting this
flag does not guarantee any particular ordering result.

#define Z_PUT_FIRST 4

If you set this bit in z_misc, the compiler puts your object as close to the beginning
of the DSP call chain as possible. This setting is not currently used by any standard
MSP object.

The dsp Method
The dsp message is sent to your object when MSP is building the DSP call chain. If
you want to add something to the chain, your dsp method should call dsp_add,
which adds your perform method to the DSP call chain. Your method should be
declared as follows:

dsp

Called by MSP to include your object in the DSP call chain.

BINDING

addmess (mysigobject_dsp, "dsp", A_CANT, 0);

DECLARATION

void mysigobject_dsp (t_sigobj *x, t_signal **sp,
short *count);

Writing MSP Code 212

Your dsp method is passed an array of t_signal structures that define your
perform method’s signal inputs and outputs. A t_signal contains a buffer of floats
and a size s_n, which specifies the number of samples computed during any
particular call to your perform routine. (This size is sometimes referred to as a vector
size.) Currently, the vector size will be the same for all the signals you receive,
although future versions of MSP may allow special objects that accept vectors of
different or variable sizes. A signal also has a sampling rate; it is very important that
if your object makes sampling-rate-dependent calculations, it use the sampling rate
in one of the signals rather than use the global sampling rate obtained by a call to
sys_getsr. The t_signal structure is defined in z_dsp.h.

In addition to the array of t_signals, your dsp method is passed an array that
specifies the number of connections to each input and output. Some MSP objects use
this information to put different perform methods on the DSP call chain. For
instance, the *~ object does some optimizing by using a simpler routine that
multiplies a signal signal by a constant if there is no signal connected to one of its
inputs. In this case it uses the object's internal value, set either as an argument or via
a float sent to the right inlet.

You may wish to use the dsp method initialize other internal variables used by your
perform routine. For example, many objects require dividing by the sampling rate.
Rather than dividing during the perform routine, which is expensive, you can
calculate the reciprocal of the sampling rate in the dsp routine, store it, and then
multiply by the reciprocal in the perform routine. Again, remember that you must
obtain the sampling rate from one of your signal arguments, rather than assuming
the sampling rate of your object’s perform routine will be the same as the global
sampling rate.

dsp_add

Use dsp_add to add your object's perform routine to the DSP call chain.

void dsp_add(t_perfroutine p, long argc, ...);

This function adds your object's perform method to the DSP call chain and specifies
the arguments it will be passed. argc, the number of arguments to your perform
method, should be followed by argc additional arguments, all of which must be the
size of a pointer or a long.

dsp_addv

Use dsp_addv to add your object's perform routine to the DSP call chain and specify
its arguments in an array rather than as arguments to a function.

void dsp_addv(t_perfroutine p, long argc, void **vector)

This function is a variant of dsp_add that allows you to construct an array of the
arguments you wish to pass to your perform routine.

Writing MSP Code 213

Here's an example of dsp method that doesn't pay attention to the connection count
information might do. It has two inputs and two outputs. The inputs appear first in
the array of signals, followed by the outputs, so sp[0] is the left input, sp[1] is the
right input, sp[2] is the left output, and sp[3] is the right output. It also storesthe
reciprocal of the sampling rate to use in its perform method calculation.

void sigobj_dsp(t_sigobj *x, t_signal **sp, short *count)
{

x->s_1oversr = 1. / (double)sp[0]->s_sr;
dsp_add(sigobj_perform, 5, sp[0]->s_vec, sp[1]->s_vec,

sp[2]->s_vec, sp[3]->s_vec, sp[0]->s_n);
}

The above call to dsp_add specifies the name of the perform routine, followed by
the number of arguments that will be passed to it, followed by each argument. The
s_vec field of a signal is its array of floats. In this case, the two input arrays are
passed, followed by the two output arrays, followed by the vector size. You can pick
any t_signal to use for the vector size. By convention, most MSP objects use the
first input signal.

Next, here's a more complex dsp method that uses a different perform routine if its
right input and right output are disconnected. One object that does something
similar is fft~, where a routine that calculates only the real part of an FFT is used if
the imaginary input and output are disconnected. In this example,
sigobj_perform2 takes only three arguments, the signal vectors for the left input
and left output, plus the vector size.

void sigobj_dsp(t_sigobj *x, t_signal **sp, short *count)
{

if (count[1] || count[3]) // right input or right output connected
dsp_add(sigobj_perform, 5, sp[0]->s_vec, sp[1]->s_vec,

sp[2]->s_vec, sp[3]->s_vec, sp[0]->s_n);
else

dsp_add(sigobj_perform2, 3, sp[0]->s_vec, sp[2]->s_vec,
sp[0]->s_n);

}

Even if, according to the information in the count array passed to your dsp method, a
t_signal is not connected to your object, the t_signal still contains a valid vector
as well as valid sample rate and vector size information.

If for some reason you want to put several functions on the DSP call chain, you can
do so: just make as many calls to dsp_add as you want. However, keep in mind
there are subtle issues when doing this. For instance, if the input and output signals
buffers point to the same memory, if the first function writes data to an output signal
buffer, the input signal buffer will have been overwritten for all subsequent perform
routines that use the same signal buffers.

Writing MSP Code 214

The Perform Routine
Your perform routine is called repeatedly to calculate signal values. MSP calls each
perform method in its DSP call chain in order with the arguments that were specified
by the object's call to dsp_add. However, the arguments are not passed on the stack;
instead, a pointer to an array containing the arguments is passed to the object. The
perform routine must return a pointer into the array just after the last argument
specified by its dsp_add call. If this is not done, MSP will crash. Your method
should be declared as follows:

t_int *sigobj_perform(t_int *w);

MSP generally calls perform routines at interrupt time. As with any interrupt
routine, your perform routine should be written as efficiently as possible. It cannot
call routines that would move memory, nor should it call post (for debugging),
since at a 44.1 kHz sampling rate and vector size of 256 samples, each perform
routine is called about every 5.8 milliseconds. You can however, set a qelem or, if
you're careful, use defer_low (not defer, since the MSP interrupt is not the Max
scheduler interrupt, and thus defer doesn't know that it is being executed at
interrupt level) to delay a function until the main level. You need to be careful
because, if you defer a call every 5.8 milliseconds, you will cause a huge backlog of
main event level functions that need to be run, as well as allocate a large amount of
memory at interrupt level.

Here is a sample perform method that takes two signals as input, adds them together
to produce one output and subtracts them to produce the other. The method is
written so that it would be compatible with the sigobj_dsp example shown above.
The type t_int is the same size as a pointer (int or long on the PowerPC); it is used
for some degree of source code compatibility with Pd perform routines.

Note that the first argument that you specified in your call to dsp_add is at offset 1
in the array passed to your perform routine. Offset 0 contains the address of your
perform routine.

t_int *sigobj_perform(t_int *w)
{

float *in1,*in2,*out1,*out2,val,val2;
long n;

in1 = (float *)(w[1]); // input 1
in2 = (float *)(w[2]); // input 2, second arg
out1 = (float *)(w[3]); // arg 3, first output
out2 = (float *)(w[4]); // arg 4, second output
n = w[5]; // vector size

// calculation loop
while (n--) {

val = *in1++;
val2 = *in2++;
*out1++ = val + val2
*out2++ = val - val2;

}

Writing MSP Code 215

return w + 6; // always return a pointer to one more than the
// highest argument index

}

In the calculation loop, the code is written so that even if the output and input signal
vectors are the same, the result is still correct. However, if for some reason you can't
do this, you can specify that the input and output signal vectors should be unique
with the Z_NOINPLACE flag. How to do this is explained above in the section entitled
Special Bits in the t_pxobject header. (Only two standard MSP objects—fft~/ifft~
and tapout~—require this feature.)

The Free Routine
If your normal object doesn't allocate any memory or need anything to be turned off
when an instance is freed, you can pass dsp_free as the free method to setup in
your initialization (main) routine. (User interface objects, even if they don't allocate
memory themselves, require a free routine because they need to call box_free.)

If you do write your own free routine, your normal object should call dsp_free in
it, and your user interface object should call dsp_freebox.

dsp_free

Use dsp_free in your object's free routine.

void dsp_free(t_pxobject *x);

This function disposes of any memory used by proxies allocated by dsp_setup. It
also notifies the signal compiler that the DSP call chain needs to be rebuilt if signal
processing is active.

dsp_freebox

For user interface objects, use dsp_freebox instead of dsp_free.

void dsp_freebox(t_pxbox *x);

This function disposes of any memory used by proxies allocated by dsp_setupbox.
It also notifies the signal compiler that the DSP call chain needs to be rebuilt if signal
processing is active.

Access to MSP Global Information 216

Real-time signal processing isn't just about calculating signals. You also want your
DSP routines to respond to changes in input parameters. This task is often referred to
as parameter updating. In Max, DSP parameters are typically control messages. You
can either use a sig~ or line~ object to convert control messages to signals, or you
can update the internal state of a signal object directly. The latter approach has the
disadvantage of possible discontinuities in the output, but for many applications or
when the user is experimenting, it is easier, not to mention more efficient.

Many MSP objects need to pass a pointer to themselves to the perform method to
access internal state information. For example, a filter object that accepts floats to
specify coefficients would need to pass itself to the perform routine so that these
coefficients can be accessed.

A Filter Example
As an example, here are the dsp and perform methods of a simple lowpass filter
object called lop~ that uses a coefficient stored in the object. Let's first assume that
the coefficient, which is specified via the right inlet of the object, can only be passed
as a float, not a signal. This means you'll have to declare an additional inlet and a
method to accept the parameter. Here is the object declaration:

typedef struct _lop {
t_pxobject x_obj; // header
float x_coeff; // coefficient
float x_m1; // filter memory

} t_lop;

Here is the initialization routine:

void main(void)
{

setup(&lop_class, lop_new, (method)dsp_free, (short)sizeof(t_lop),
0L, A_DEFFLOAT, 0);

addftx(lop_ft1,1); // bind right inlet method
addmess(lop_dsp,"dsp", A_CANT, 0);
dsp_initclass();

}

Here is the right inlet method..

C H A P T E R 1 7

Handling MSP Parameters

Access to MSP Global Information 217

void lop_ft1(t_lop *x, double f)
{

x->x_coeff = f;
}

Here is the new instance routine. There is only a single signal input, in the left inlet,
so 1 is passed as the signal input count to dsp_setup.

void *lop_new(double initial_coeff)
{

t_lop *x = newobject(lop_class);
dsp_setup((t_pxobject *)x, 1);
floatin((t_object *)x,1);
outlet_new((t_object *)x,"signal");
x->x_coeff = initial_coeff; // initialize coefficient
x->x_m1 = 0.; // initialize previous state
return x;

}

Here is the dsp method. It instructs MSP to pass the object’s pointer, the input vector,
the output vector, and the vector size to the perform routine. No signal connection
counting is required; indeed, you could declare the method without the count
parameter if you wanted to.

void lop_dsp(t_lop *x, t_signal **sp, short *count)
{

dsp_add(lop_perform1, 4, x, sp[0]->s_vec, sp[1]->s_vec,
sp[0]->s_n);

}

Finally, here is the perform routine. We have called it lop_perform1 because we'll
be writing alternative perform methods as we continue with the example. Note how
we get the filter coefficient out of the object's structure and place it in a local variable.
This is far more efficient than reading it out of the object during the calculation loop
since the vector could be up to 2048 samples. Since the perform routine is executing
at interrupt level, we are guaranteed that the coefficient won't change in the middle
of the routine. The same is true for the filter's memory that is also stored inside the
object.

t_int *lop_perform1(t_int *w)
{

t_lop *x = (t_lop *)(w[1]); // object is first arg
float *in = (float *)(w[2]); // input is next
float *out = (float *)(w[3]); // followed by the output
long n = w[4]; // and the vector size
loat xm1 = x->x_m1; // local to keep track of previous state
float coeff = x->x_coeff,val; // and coefficient

// filter calculation
while (n--) {

val = *in++;

Access to MSP Global Information 218

*out++ = coeff * (val + xm1);
xm1 = val;

}
x->x_m1 = xm1; // re-save old state for the next time
return w + 5;

}

Now we will rewrite the filter to accept either a float or a signal for the coefficient
value. There are two strategies for doing this depending on how often you want to
read the coefficient value from a signal vector. First, let’s write it with a single
perform routine that makes a decision about whether to get the coefficient from a
signal or from the float value stored inside the object. In this implementation, the
coefficient is only read from the first value of the signal vector, and the rest of the
vector is ignored.

We will add a field to our object that tells the perform routine whether a the dsp
routine found that a signal was connected to the right inlet or not.

typedef struct _lop {
t_pxobject x_obj;
float x_coeff;
float x_m1;
short x_connected;

} t_lop;

Since MSP will be using a proxy to get the signal and the float in the right inlet, we
need to change our initialization routine sightly. We replace

addftx(lop_ft1,1);

with

addfloat(lop_float);

Other than being renamed, the float method remains the same as the one above.

Here is the revised new instance routine that specifies two signal inlets. We have
removed the creation of the additional inlet and changed the number of signal inlets
specified in the call to dsp_setup to 2. dsp_setup, using a proxy, creates the right
inlet for us.

void *lop_new(double initial_coeff)
{

t_lop *x = newobject(lop_class);
dsp_setup((t_pxobject *)x,2); // changed from previous example
outlet_new((t_object *)x,"signal");
x->x_coeff = initial_coeff; // initialize coefficient
x->x_m1 = 0.; // initialize previous state
return x;

}

Access to MSP Global Information 219

Here is the revised dsp method. Since there are now two signal inlets, the output
vector is at sp[2] rather than sp[1].

void lop_dsp(t_lop *x, t_signal **sp, short *count)
{

x->x_connected = count[1]; // save whether right inlet has a signal
// going into it

dsp_add(lop_perform2, 5, x, sp[0]->s_vec, sp[1]->s_vec,
sp[2]->s_vec,

sp[0]->s_n);
}

Here is the revised perform routine. Depending on the value of the x_connected
field of the object, it uses either the first value from the signal vector passed on the
stack or the stored float value.

t_int *lop_perform2(t_int *w)
{

t_lop *x = (t_lop *)(w[1]);
float *in = (float *)(w[2]);

// use either signal or stored coefficient
float coeff = x->x_connected? *(float *)(w[3]) : x->x_coeff;

float *out = (float *)(w[4]);
long n = w[5];
float xm1 = x->x_xm1,val;

while (n--) {
val = *in++;
*out++ = coeff * (val + xm1);
xm1 = val;

}
x->x_m1 = xm1; // re-save old state for the next time
return w + 6; // 6 because there were now five arguments

}

The second strategy uses two different perform routines. The dsp method decides
which one to use based on the count of signals connected to the right input. Other
than the elimination of the x_connected field of the t_lop structure, only the dsp
and perform methods change from the previous implementation of lop~. Here is the
revised dsp method, which makes reference to the original lop_perform1 method
defined above. Even though there is an additional input signal to the object now, we
can still use lop_perform1 by passing only the left input signal vector and the
output signal vectors. lop_perform1 has no idea that there was another input
signal vector.

void lop_dsp(t_lop *x, t_signal **sp, short *count)
{

if (count[1])
dsp_add(lop_perform3,5,x, sp[0]->s_vec, sp[1]->s_vec,

Access to MSP Global Information 220

sp[2]->s_vec, sp[0]->s_n);
else

dsp_add(lop_perform1, 4, x, sp[0]->s_vec, sp[2]->s_vec,
sp[0]->s_n);
// skip unused sp[1] signal

}

Finally, here is lop_perform3, which uses all of the values from the input
coefficient signal in calculating the low-pass filter output. It is ignorant that there is a
stored internal coefficient.

t_int *lop_perform3(t_int *w)
{

t_lop *x = (t_lop *)(w[1]);
float *in = (float *)(w[2]);
float *coeff = (float *)(w[3]);
float *out = (float *)(w[4]);
long n = w[5];
float xm1 = x->x_xm1,val;

while (n--) {
val = *in++;

// use each value in the coefficient signal vector
*out++ = *coeff++ * (val + xm1);
xm1 = val;

}
x->x_m1 = xm1; // re-save old state for the next time
return w + 6;

}

Access to MSP Global Information 221

The following routines provide access to the global state of the DSP environment.
The results may not be valid in your object's main (initialization) routine, and they
may change between your object's new instance routine and its dsp method.

sys_getblksize

Use sys_getblksize to find out the current DSP vector size.

long sys_getblksize(void);

sys_getsr

Use sys_getsr to find out the current sampling rate. However, do not use
sys_getsr() within an object’s dsp method or its perform routine. Instead, use the
sampling rate of one of the signal vectors passed to the dsp method, and store this
value in your object for access by the perform routine if it needs it.

float sys_getsr(void);

sys_getch

Use sys_getch to find out the current maximum number of channels.

long sys_getch(void);

sys_getdspstate

Use sys_getdspstate to find out whether the DSP is active or not.

long sys_getdspstate(void);

This function returns 1 if the DSP is active, 0 if it is not.

The following function returns information about an object's context in a DSP
network.

dsp_isconnected

Use dsp_isconnected to determine whether two signal objects are connected.

C H A P T E R 18

Access to MSP Global Information

Access to MSP Global Information 222

short dsp_isconnected(t_object *src, t_object *dst, short
*index);

This function is useful only if you call it in your dsp method. It can be used to
determine whether there is a signal connection from an outlet of src to an inlet of dst.
The function returns a non-zero result if there is a connection, and zero if there isn't.
The result is a count of the number of objects in between src and dst plus one. For
example, if dst were directly below src, dsp_isconnected would return 1.
dsp_isconnected returns in index the inlet number of dst (starting at 0) where
the connection occurs. If there is more than one connection, information about the
leftmost connection is returned.

Updating Externals for Max 4.0 223

This appendix describes how to update external objects for compatibility with Max
4.0. It concentrates on those changes you may need or wish to make in an existing
external object to work best with the new revision.

There should be very few non-UI objects that will not work with Max. Some UI
objects will need minor changes to work properly. The major changes outside of new
UI calls are in objects that make direct access to the Macintosh file system. A suite of
new file handling routines are intended to provide cross-platform access to files and
the search path; these are described in chapter 8

What Is No Longer Supported
68K – Max 4.0 is PowerPC only. As a result of this change, it is no longer necessary to
surround your methods with the 68K "safety" routines (EnterCodeResource(),
ExitCodeResource(), PrepareCallback(), EnterCallback() and
ExitCallback()). The A4-related header files are no longer included in the SDK,
and references to 68K specific code should be removed from your external.

You also no longer need a mAxL resource in order for your PowerPC-only object to
work inside collectives—the resource is now added to a collective if it's missing.
However, these resources are still needed for compatibility with Pluggo and earlier
versions of Max, so it's a good idea to include one. If you want the standard one that
prints "<object name>: not available for 68K" in the Max window when the object is
loaded, use ResEdit to copy the mAxL resource out of any standard MSP external,
then change the resource name to the name of your object.

Standard File Calls – fopen, fclose etc. have been removed from the Max library.

Certain Scheduler Calls – clock_set no longer does anything. You should use
clock_delay instead, or if you want to take advantage of the new floating-point
scheduling available in Max 4.0, use clock_fdelay.

A P P E N D I X A

Updating Externals for Max 4.0

Updating Externals for Max 4.0 224

Writing Objects that Work with Both Max 4.0 and Max 3.x

Since the Max 4.0 library exports many more functions than the Max 3.x libraries, if
you use any of these functions and load your object under Max 3.x, you will get an
error due to unresolved references. The solution is to "weak link" your object to the
Max library (MaxLib) so that if there are unresolved references, the object will load
anyway. When you do this, the pointers to the unresolved functions will be zero. So,
one way you can test whether you are using Max 4 is to evaluate the value of a
symbol that it is only in Max 4 or later. A good one (being somewhat easy to
remember) is genpath.

To weak link MaxLib in your project in Code Warrior Pro 4 and 6, select it and
choose Project Inspector from the Project menu. Check Import Weak in the window
that appears, and close the window. With MPW, you use the –weaklib linker option
for MaxLib.

Once you’ve set up the library to use weak linking/import, use the following code in
your source code (you might want to do this in your main() function, so you can use
the resulting variable elsewhere).

Boolean using_max4;

using_max4 = genpath != 0;

Then later you can say things like

if (using_max4)
path_openfile(…); // max 4 version of the code

else
FSOpen(…); // old version

Note that all standard Max 4 externs are not intended to be compatible with Max 3.x,
so they do not perform these checks.

UI Object Changes
If your object is not a user-interface object (in other words, it doesn't appear in the
palette of icons in the patcher window), you can skip this section.

The major changes in Max 4.0 involve an attempt to create multi-layered interfaces
with non-rectangular objects. This would not be a problem—simply draw everything
from back to front—if objects did not redraw within the interface (such as a slider
redrawing in response to messages). Therefore, some additional complexity has been
introduced when you are drawing in response to a message.

Updating Externals for Max 4.0 225

As you may know, it is never permissible to draw directly from any message that can
be sent from within a Max patch. For these message, a qelem should be used to allow
Max to defer the drawing.

Messages such as update or click are different—because they cannot be generated by
Max programmers; they are sent to your object by the Max application. In these
cases, you can draw whatever you want (although dragging is a slightly different
case, as discussed below).

If a message needs to defer drawing, you should use a qelem routine (as discussed in
Chapter 7).

Traditionally, qelem functions were written with the following structure:

void myobject_qfn(t_myobject *x)
{

GrafPtr gp;

if (gp = patcher_setport(x->m_box.b_patcher)) {
if (!box_nodraw((t_box *)x)) {

// draw here
}
SetPort(gp);

}
}

To this, we've added one additional call, box_enddraw, to improve the performance
of redrawing.

void myobject_qfn(t_myobject *x)
{

GrafPtr gp;

if (gp = patcher_setport(x->m_box.b_patcher)) {
if (!box_nodraw((t_box *)x)) {

// draw here
box_enddraw((t_box *)x); // added call

}
SetPort(gp);

}
}

box_enddraw can only be used after you are finished drawing, and only if a
previous call to box_nodraw returns false.

If you want to check whether a box is visible or not (or in a visible patcher or visible
in a bpatcher), use the new box_visible service routine.

After revising your qelem routine to use box_enddraw, you should add the
F_SAVVY flag to your call to box_new in your new instance routine. For example:

void *myobject_new(t_symbol *s, short argc, t_atom *argv)

Updating Externals for Max 4.0 226

{
t_myobject *x = (t_myobject *)newobject(myobject_class);

// various initialization

box_new((t_box *)x,patcher, F_DRAWFIRSTIN | F_NODRAWBOX | F_GROWBOTH |
F_SAVVY, left, top, right, bottom);

box_ready((t_box *)x);
return x;

}

Signal Object Changes
The only change needed in MSP signal objects is to ensure that you obtain the
sampling rate from the t_signal structures passed to you in the dsp method rather
than using the global sampling rate returned by sys_getsr. This is because your object
may be used inside an object such as poly~ or pfft~ that runs at a higher or lower
sampling rate than the global rate. The following code example shows how to store
the sampling rate from a t_signal.

void *myobject_dsp(t_myobject *x, t_signal **sp, short *count)
{

x->x_sr = sp[0]->s_sr; // store sampling rate
// more code here

}

Reserved Messages 227

For All Objects

Max makes certain assumptions if external objects have methods bound to some
symbols. If you bind methods to these symbols, your methods need to do what Max
expects. In addition, there are certain “internal” messages not described here that are
used by Max or by certain objects. You need to avoid binding methods to these
symbols. Below is a review of both the documented messages for which your method
needs to play by the rules, as well as the secret internal messages you need to avoid
altogether.

Many words are ill-advised only in certain contexts, such as for user-interface objects,
non-user-interface objects, or objects that own windows. Thus this list is categorized
by the context in which the message may be sent to your object by the system.

assist Max asks an object to descibe itself. Avoid for other purposes.

checkin Used by inlets to do type-checking. Avoid using this word.

disable Sent to every object in a patcher when the user changes the enable
icon in the title bar of a patcher window to the "X." For MIDI
objects, this causes them to stop input or output. If your object talks
directly to a piece of hardware, you may want to implement this
method, otherwise don’t use the word.

enable Sent to every object in a patcher when the user changes the enable
icon in the title bar of a patcher window to the MIDI symbol. All
objects are assumed to be enabled when created. For MIDI objects,
this causes them to enable input or output. If your object talks
directly to a piece of hardware, you may want to implement this
method, otherwise don’t.

loadbang Sent to all objects by the patcher after a file has been loaded. Avoid
for anything other than special initialization in this context.

preset Used to support the preset object. Avoid for any other purpose.

repo Internal message used by MIDI objects but sent to all objects. Sent
every time the OMS setup changes. Don’t use it.

info Called when your object is selected in an unlocked patcher and the
user chooses Get Info... from the Max menu. Don’t use it for
anything else than bragging or putting up a dialog to edit your
object’s settings.

A P P E N D I X B

Reserved Messages

Reserved Messages 228

For Non User-Interface Objects Only

For Any Object that Can Be Loaded from a File (eg. patcher, table, timeline)

save If a method is bound to "save", Max assumes it is the object’s way of
saving itself in a Patcher file. (An example of how this is done is
found in the sample code for the simp object or the coll object).
Don't use in any other context.

dblclick Sent to an object when the user double-clicks on an object box.
Many objects open editing windows at this time. If you implement
this for something else, the user will experience unpredictable
behavior when double-clicking on your object’s box.

imbed Internal message used by patcher objects. Avoid it.

front Used to bring patcher and table windows to the front. Don’t use
unless you’re implementing an object whose files can be opened
directly.

For User-Interface Objects Only

filename Used to set a filename for a window after it has been loaded. OK
only for this purpose.

setport If a method is bound to setport, Max assumes it is a user interface
object which requires special treatment when doing a
patcher_setport. Don’t use it.

invis For specialized user interface objects like bpatcher. Don’t use it.
Note that the invis message is used by window-owning objects for
something entirely different.

vis For specialized user-interface objects like bpatcher. Don’t use it.
Note that the vis message is used by window-owning objects for
something entirely different.

eval Used by user-interface text objects, like the message box and the
object box, to re-evaluate their binbufs to create a new object. Takes
no arguments. Best to avoid.

offset Also used by bpatcher. Objects that don't set b_checkinvis field of
the box can use this.

psave Patcher save method. Avoid for any other purpose.

key Patcher key method. Avoid for any other purpose.

click Patcher mouse click method. Avoid for any other purpose.

update Patcher update method. Avoid for any other purpose.

bfont Patcher method to change box’s font. Avoid for any other purpose.

clipregion Sent to an object to determine its shape. Avoid for any other
purpose.

Reserved Messages 229

Objects that Own Text Editors Only

pname For user interface objects whose b_firstin field is a patcher. Takes no
arguments, and requests the name of the patcher, which should be
returned as a symbol as the function result. Avoid for other
purposes if you store a patcher this way.

edsave Used by the ed object to allow the owner of a text editor to save (or
not save) text in a special way. Avoid for other purposes.

edclose Used to pass text to an object when window closes. Avoid for other
purposes.

Objects that Own Patcher Windows Only

okclose Used by the Ed object to allow the owner of a text editor to put up
an alert asking whether the user wishes to save changes. Avoid for
other purposes.

pclose Sent to an object that has associated itself with a patcher in the
p_assoc field when the patcher window is closing. Avoid for other
purposes if you modify this field.

Objects that Own Windows Only

okclose Sent to an object associated with a patcher window (that used
patcher_okclose) when the window is about to be closed. Make sure
your okclose method conforms if you call patcher_okclose.

 okclose Sent to window owner to override save changes dialog. Avoid for
other purposes.

saveto Sent to window owner to save a file. Avoid for other purposes.

otclick Sent to window owner on option-title-click. Avoid for other
purposes.

oksize Sent to window owner to confirm size change. Avoid for other
purposes.

mouseup Sent to window owner on mouse up event. Avoid for other
purposes.

print Sent to window owner when user wants to print. Avoid for other
purposes.

help Sent to window owner when Help is chosen from Max menu.
Avoid for other purposes.

font Sent to window owner when Font menu is used. Avoid for other
purposes.

wsize Sent to window owner when window size changes. Avoid for other
purposes.

Reserved Messages 230

key Sent to window owner on key down event. Avoid for other
purposes.

activate Sent to window owner on activate event. Avoid for other purposes.

update Sent to window owner on update event. Avoid for other purposes.

click Sent to window owner on mouse down event. Avoid for other
purposes.

idle Sent to window owner during main event loop idle time. Avoid for
other purposes.

find Sent to window owner when Find item is used in Edit menu. Avoid
for other purposes.

invis Sent to window owner when window will become invisible. Avoid
for other purposes.

close Sent to window owner to close window. Avoid for other purposes.

scroll Sent to window owner to scroll window contents. Avoid for other
purposes.

dialog Sent to window owner when Get Info… is chosen from Max menu.
Avoid for other purposes.

pastepic Sent to window owner when Paste Picture is chosen from Edit
menu. Avoid for other purposes.

wcolor Sent to window owner when Color… is chosen from Max menu.
Avoid for other purposes.

chkmenu Sent to window owner to enable and disable menu items. Avoid for
other purposes.

undoitem Sent to window owner to set text of Undo item. Avoid for other
purposes.

edit Sent to window owner when Edit is chosen from Max menu. OK for
other purposes if you don’t enable field in chkmenu message.

lineup Sent to window owner when Align is chosen from Max menu. OK
for other purposes if you don’t enable field in chkmenu message.

fixwidth Sent to window owner when Fix Width is chosen from Max menu.
OK for other purposes if you don’t enable field in chkmenu
message.

hide Sent to window owner when Hide On Lock is chosen from Max
menu. OK for other purposes if you don’t enable field in chkmenu
message.

show Sent to window owner when Show On Lock is chosen from Max
menu. OK for other purposes if you don’t enable field in chkmenu
message.

undo Sent to window owner when Undo is chosen from Edit menu. OK
for other purposes if you don’t implement an undoitem method.

cut Sent to window owner when Cut is chosen from Edit menu. OK for
other purposes if you don’t enable field in chkmenu message.

Reserved Messages 231

copy Sent to window owner when Copy is chosen from Edit menu. OK
for other purposes if you don’t enable field in chkmenu message.

paste Sent to window owner when Paste is chosen from Edit menu. OK
for other purposes if you don’t enable field in chkmenu message.

clr Sent to window owner when Clear is chosen from Edit menu. OK
for other purposes if you don’t enable field in chkmenu message.

dup Sent to window owner when Duplicate is chosen from Edit menu.
OK for other purposes if you don’t enable field in chkmenu
message.

selall Sent to window owner when Select All is chosen from Edit menu.
OK for other purposes if you don’t enable field in chkmenu
message.

Index 232

“Binding” to a symbol means that there is something of value in the Symbol’s
s_thing field (the t_symbol’s s_name field is a pointer to a C string). These
bindings exist for specific limited times, as specified below.

#I When your object’s initialization function is called, the name of your object (as a
symbol) is bound to the symbol #I. This is important for objects such as the led
object that can be modified by changing its resources. Because led looks at its
current name bound to #I, different versions of the led object, with different
names, can co-exist, since led uses this name in its psave method.

#B A non-user-interface object can get its Box when its creation function is called by
looking at what is bound to #B. The Box is not necessarily connected to other
objects, visible, or anything else in particular at the time the object is created.
Another use of #B is the color message that is added to set the color of the new
object box if it is not the default color. Change the color of a new object box, save
a file containing it, and open it as text. You’ll see something like…

#P newex 20 54 18 18 19932 funbuff;
#B color 10;

#P Any object can access its patcher in its creation function by looking at what is
bound to this symbol.

#A An object that is loaded as an Action into a Timeline gains access to its parent
Track by looking at what is bound to #A.

A P P E N D I X C

Useful Symbols

Index 233

#A, 232
#B, 232
#I, 232
#P, 232
68K, 8, 223
A_CANT, 87, 88
A_COMMA, 49
A_DEFFLOAT, 17
A_DEFLONG, 17
A_DEFSYM, 17
A_DOLLAR, 49
A_FLOAT, 17
A_GIMME, 18, 23, 181
A_LONG, 17, 44
A_NOTHING, 17, 28, 94
A_OBJ, 18
A_SEMI, 49
A_SYM, 17
Action external, 183
actionIcon message, 184
activate message, 114
addbang, 26
addfloat, 27
addftx, 27
addint, 27
addinx, 27
addmess, 17, 22, 27, 28, 111
alert box, 65
alias, 23
anything method, 28
argument type specification list, 17
assist message, 32
assist_drawstring, 155
ASSIST_INLET, 32
ASSIST_OUTLET, 32
assist_string, 32, 67
assistance, 32, 67, 155
Atom, 18, 44, 95
Atombuf structure, 52
atombuf_free, 52
atombuf_new, 52
atombuf_text, 52
bang message, 25
bangout, 39, 55
bfont message, 147
bidle message, 149
binary files, 44
binbuf, 44

example, 45
saving, 74

binbuf_append, 46
binbuf_eval, 48
binbuf_getatom, 48, 51
binbuf_insert, 46, 194

example for preset, 97
binbuf_new, 46, 50
binbuf_read, 50
binbuf_set, 49

binbuf_text, 49, 51
binbuf_totext, 50, 122
binbuf_vinsert, 33, 46, 47, 145
binbuf_write, 50
binding, 25
Box structure, 138
box_color, 158
box_enddraw, 151
box_free, 143
box_getcolor, 158
box_new, 140
box_nodraw, 150
box_ownerlocked, 149
box_ready, 142
box_redraw, 151
box_size, 150
box_usecolor, 158
box_visible, 151
calculation loop, 215
chkmenu message, 117
class, 5
click message, 112, 144

to Timeline editors, 198
click method, 58
clipregion, 160
clock

example of use, 55
clock function, 53, 107

example, 55
clock message, 105, 107
clock objects, 53
clock_delay, 54, 55, 105, 223
clock_fdelay, 54, 223
clock_getftime, 54
clock_new, 53, 55, 105
clock_set, 223
clock_unset, 54, 56
close message, 114
CodeWarrior, 6
CodeWarrior Template, 8, 9
color dialog, 155
color message, 155, 156
colorinfo, 169
connection facility, 102
connection_client, 102
connection_delete, 104
connection_send, 103
connection_server, 103
Creating Schedulers, 108
dblclick message, 92, 93, 111, 197
debugging, 64
default volume, 75, 100
defer, 60, 61
defer_low, 60
defvolume, 75
dialog message, 120
dirty bit, 122, 127, 152
disable message, 30

Index

Index 234

disposhandle, 58, 70
disposhandle, 69
do-nothing function, 89
drag function, 128
dragging, 162
drawline, 209
drawstr, 68
DSP call chain, 206, 209, 212
dsp message, 211
dsp method, 206, 209, 213
dsp_add, 211, 212, 214
dsp_addv, 212
dsp_free, 208, 215
dsp_freebox, 215
dsp_initboxclass, 209
dsp_initclass, 209
dsp_isconnected, 221
dsp_setup, 210
dsp_setupbox, 210, 215
dynamic linking, 16
Ed object, 91
ed_new, 92
ed_settext, 93
ed_vis, 93
edclose message, 91, 92
Editor for Timeline, 186
editor_register, 186
edsave message, 92
egetfn, 89
enable, 209
enable message, 30
enter message, 147, 148, 149
error, 64, 104
error_subscribe, 104
error_unsubscribe, 105
Event rectangle, 190
event serial number, 97
Event structure, 186, 187
event_avoidRect, 197
event_box, 188, 190
event_new, 188, 189
event_offsetRect, 199, 201
event_process, 109
event_run, 110
event_save, 193
event_schedule, 194, 195
event_spool, 192
eventEnd message, 181
eventStart message, 193
evnum_get, 98

example, 98
evnum_incr, 98
expr object, 93
expr_eval, 94
expr_new, 94
ext.h, 15, 208
ext_event.h, 187
ext_menu.h, 117

ext_numc.h, 133
ext_oms.h, 99
ext_proto.h, 15
ext_user.h, 138
fclose, 223
file path, 72
file permission, 86
file serial number, 97, 98
FILE_REF, 86
fileload, 100
find message, 121
finder_addclass, 23
floatin, 36
floatin, 27
floating point numbers, 16, 17
floatout, 39
font message, 120
fopen, 223
free function, 6, 40
free routine, 208, 215
freebytes, 70, 71
freebytes16, 71
freeobject, 40, 53, 63
freeserver message, 104
function prototypes, 16
genpath, 77
gensym, 19, 44, 63, 90, 107
getbytes, 58, 70
getbytes16, 71
getfn, 88
gettime, 54
graphics window, 169
growhandle, 70
GWind structure, 169
gwind_get, 170
gwind_new, 170
gwind_offscreen, 170, 171
gwind_setport, 171
header files, 15
help message, 121
idle message, 113

to Timeline editors, 198
info message, 196
info message, 30
initialization routine, 208, 209, 210, 218
inlet, 27, 87

not showing, 35
routines for creating, 36

inlet, 25, 40
inlet_4, 37
inlet_new, 37
inlet_to, 38
Inspectors, 162
instance creation function, 6, 20, 27, 34

for Timeline editors, 188
instances, 5

creating, 87
int message, 25

Index 235

integer inlets, 36
InterfaceLib, 206
interrupt level, 53, 56, 58, 60, 64, 69
intin, 36
intin, 27
intout, 39
isnewex, 154
ispatcher, 153
isr, 59
key event, 113
key message, 113, 147

to Timeline editors, 199
leftmost inlet, 25, 27
leftmost outlet, 38
list, 29
list method, 29
listout, 39
loadbang message, 31
locatefile, 75, 76
locatefile_extended, 76
locatefiletype, 76
lockout, 144

restoring, 59
lockout, 56
lockout_set, 58, 59
lowload, 101
main event level, 214
main function, 5, 20
MathLib, 206
MAX #includes, 16
Max Audio Library, 206
Max window, 64
MaxAudioLib, 206
MaxLib, 206
maxversion, 67
memory allocation, 69
menu function

for Timeline editors, 191
for user interface objects, 21

menu messages, 117, 118
Menuinfo structure, 117
mess0, 89
mess1, 89
mess2, 89
message, 5

reserved, 227
typed, 88
untyped, 88

message box, 25
message data type, 181
message name, 181
message selector, 17
message_patcherRegister, 180, 182
message_patcherUnregister, 181, 183
message_register, 180, 183, 184
message_unregister, 184
methods, 5
midiinfo, 99

mouse dragging, 127
mouseup message, 117
multi-layered UI, 224
MWCRuntime.Lib, 206
nameinpath, 77
new instance routine, 218
New Object List, 23
newex_knows, 154
newhandle, 58, 69
newinstance, 87, 89
newobject, 35
newserver message, 102, 103
non-rectangular objects, 224
normal objects, 5
num_draw, 135
num_hilite, 135
num_new, 133
num_setvalue, 136
num_test, 135
num_track, 136
Numerical

draw routine, 134
flags, 134
inc routine, 134
tracking routine, 136

Numerical object, 133
ob_sym, 102
object creation function, 17
Object structure, 16
object_subpatcher, 69
off_copy, 172
off_copyrect, 172
off_free, 172
off_maxrect, 173
off_new, 172
off_resize, 173
off_tooff, 173
Offscreen structure, 171
okclose message, 91, 122, 153
oksize message, 115
OMS, 99
OMS Timing, 99
OMSGluePPC.lib, 99
OMSMaxPortList, 99
OMSVersion, 99
open_dialog, 72
open_promptset, 74
Operating System Access Routines, 109
otclick message, 116
ouchstring, 65
outlet

routines for creating, 38
typed, 40

outlet, 42
outlet_anything, 43, 63
outlet_bang, 42
outlet_float, 42
outlet_int, 42, 56

Index 236

outlet_list, 43
outlet_new, 39
Overdrive mode, 53, 56
owning patcher, 150, 152
parameter updating, 216
pastepic message, 119
patcher, 5

iterating through windows, 155
patcher_avoidbox, 197
patcher_deselectbox, 152
patcher_dirty, 152
patcher_eachdo, 154
patcher_okclose, 153
patcher_selectbox, 152
patcher_setport, 144, 153
path_closefolder, 85
Path_Compatibility, 72
path_createfile, 80
path_createresfile, 81
path_fileinfo, 79
path_foldergetspec, 84
path_foldernextfile, 84
path_frompathname, 82
path_getapppath, 83
path_getdefault, 83
path_getfilemoddate, 83
path_getmoddate, 83
path_lookup, 77
path_namefromspec, 78
path_new, 78
path_openfile, 80
path_openfolder, 84
path_openresfile, 80
path_resolvefile, 79
path_setdefault, 82
PATH_SPEC, 72
path_topathname, 82
path_tospec, 78
path_translate, 81
Pd, 214
perform routine, 206, 213
post, 64
postatom, 64, 65
preset message, 31, 95
preset object, 95
preset_int, 95
preset_set, 96
preset_store, 96
print message, 122
printf, 64
privately defined class, 87
proxies, 40, 208, 209
proxy_new, 40, 41
psave message, 145

example, 146
to Timeline editors, 192

pseudo-type constants, 49
Qelem, 60

Qelem structure, 56
qelem_free, 57, 58
qelem_front, 57, 60
qelem_new, 56, 57
qelem_set, 56, 57
qelem_unset, 57
qti_extra_free, 165
qti_extra_matrix_get, 165
qti_extra_matrix_set, 165
qti_extra_new, 165
qti_extra_rect_get, 166
qti_extra_rect_set, 166
qti_extra_scalemode_get, 166
qti_extra_scalemode_set, 167
qti_extra_time_get, 167
qti_extra_time_set, 167
qtimage_getrect, 164
qtimage_open, 164
quittask_install, 68
quittask_remove, 68
readatom, 51
readtohandle, 100
receive object, 25
registration, 180
rescopy, 22
reserved messages, 227
reserved resources, 22
resnamecopy, 22
sampling rate, 212, 221
Save As…, 120
save message, 33
save method, 46, 47
saveas_dialog, 73
saveas_promptset, 75
saveasdialog_extended, 73
saveto message, 119, 131
schedule, 61
schedule_delay, 61
scheduler_gettime, 109
scheduler_new, 108
scheduler_run, 109
scheduler_set, 108
scheduler_settime, 109
scroll bars, 130
scroll message, 115
selected message, 200
serialno, 98
set, 29
set message, 96
setclock object, 105

example, 107
setclock_delay, 105, 107
setclock_fdelay, 106
setclock_getftime, 106
setclock_gettime, 106
setclock_unset, 106, 107
setup, 17, 20, 139
SFGetFile, 73

Index 237

shared library, 206
SICN resource, 139

naming, 139
signal, 209
signal inlet, 209, 210
signal outlets, 210
signal vectors, 215
sizeof operator, 21
Smallbox structure, 189
SoundLib, 206
sprintf, 66
Sprite

example, 177
priority, 177

Sprite structure, 174
sprite_erase, 176
sprite_move, 175
sprite_moveto, 175
sprite_new, 174
sprite_newpriority, 176
sprite_rect, 175
sprite_redraw, 176
sscanf, 66
standard file calls, 223
STR resource, 68
stringload, 100
Symbol, 18, 63, 105
sys_getblksize, 221
sys_getch, 221
sys_getdspstate, 221
sys_getsr, 221
syswindow_hide, 133
syswindow_inlist, 132
syswindow_show, 132
t_fileinfo, 79
t_pxbox, 208, 211
t_pxobject, 208, 211
t_signal, 212, 213
table objects, 90
table_dirty, 90
table_get, 90
target event, 198
temporary resource file, 22
text editor, 91
text file, 44
Timeline editor

scheduling, 194
Timeline object, 180
track_clipBegin, 201, 202
track_clipEnd, 201, 202
track_drawDragParam, 198, 204
track_drawDragTime, 204
track_drawTime, 204
track_eraseDragTime, 205
track_MSToPix, 203
track_MSToPos, 203
track_pixToMS, 202
track_posToMS, 203

track_setport, 200, 202
Transparent Objects, 159
traverse method, 102
type checking, 17
type-checked arguments, 28
typedmess, 88, 181
undo message, 118
undoitem message, 119
unset message, 107
update message, 112, 144

to Timeline editors, 195
user interface objects, 5, 138

changing font and size, 147
menu function, 139

userconnect, 209
vector size, 212, 213
version number, 67
vis message, 115
volume reference number, 100
weak link, 224
Wind structure, 111, 124
wind_close, 132
wind_defaultscroll, 112, 127
wind_dirty, 127
wind_drag, 112, 114, 127, 144, 200, 204
wind_filename, 131
wind_inhscroll, 128
wind_invis, 126
wind_new, 111, 125
wind_nocancel, 132
wind_noworrymove, 128
wind_setbin, 131
wind_setcursor, 129
wind_setgrowbounds, 126
wind_setport, 111, 128, 129, 153
wind_setsmax, 130
wind_setsval, 130
wind_settitle, 120, 130
wind_setundo, 131
wind_syswind, 130
wind_vis, 126
window, 111

associated object, 153
messages, 111

window flags, 125
wsize message, 116
z_dsp.h, 208
z_proxy.h, 208
zgetfn, 89

	Contents
	Chapter 1 - Overview
	About This Manual
	Conventions

	Chapter 2 - Basics
	The Choice of Development Environments
	Creating Projects Using Metrowerks Code Warrior Pro 4
	Creating Projects Using Metrowerks Code Warrior Pro 6
	Creating Projects Using the Apple MPW
	Header Files
	Function Prototypes
	Object Header

	Chapter 3 - Data Types and Argument Lists
	Chapter 4 - The Initialization Routine
	Routines for Defining Your Class
	Reserved Resources

	Chapter 5 - Messages
	Basic Behavior
	Routines for Binding Messages
	Standard Message Selectors
	Messages from Max

	Chapter 6 - Writing the Instance Creation Function
	Routines for Instance Creation
	Routines for Creating Inlets
	Routines for Creating Outlets
	Using Proxies

	Chapter 7 - Elements of Methods
	Routines for Using Outlets
	Binbuf Routines
	Routines for Atombufs
	Clock Routines
	Qelem Routines
	Interrupt Level Considerations

	Chapter 8 - Essential Max Utilities
	General Utilities
	Memory Management Routines
	File Routines

	Chapter 9 - Advanced Facilities
	Advanced Object Creation and Message Routines
	Routines for Sending Untyped Messages
	Table Access
	Text Editor Windows
	Access to expr Objects
	Presets
	Event and File Serial Numbers
	OMS Access
	Loading Max Files
	Connecting Objects As Clients and Servers
	Error Message Subscription
	Scheduling with setclock Objects
	Creating Schedulers
	Operating System Access Routines

	Chapter 10 - Objects With Windows
	Window Messages
	Menu Messages
	Window Routines
	Numericals

	Chapter 11 - Writing User Interface Objects
	The Box
	The SICN
	User Interface Object Creation Functions
	Routines for User Interface Objects
	Color And User Interface Objects
	Transparent Objects
	Inspectors
	QuickTime Image Routines

	Chapter 12 - Graphics Windows
	Graphics Window Routines
	Offscreen Routines
	Sprite Routines

	Chapter 13 - Writing Objects for the Timeline
	Registration
	Writing an Action External

	Chapter 14 - Writing Editors for the Timeline
	Editor Instance Creation and the Event Structure
	Messages Sent to Editors By the Timeline
	Messages for Editors of Editable Events
	Routines For Drawing in Editors
	Event Position Conversion Routines
	Routines for Drawing in the Timeline Legend

	Chapter 15 - MSP Development Basics
	The MSP Library
	Creating MSP Projects
	Project Resource File

	Chapter 16 - Writing MSP Code
	Include Files
	Defining Your Object Structure
	Writing the Initialization Routine
	New Instance Routine
	Special Bits in the t_pxobject Header
	The dsp Method
	The Perform Routine
	The Free Routine

	Chapter 17 - Handling MSP Parameters
	A Filter Example

	Chapter 18 - Access to MSP Global Information
	Appendix A - Updating Externals for Max 4.0
	What Is No Longer Supported
	Writing Objects that Work with Both Max 4.0 and Max 3.x
	UI Object Changes
	Signal Object Changes

	Appendix B - Reserved Messages
	Appendix C - Useful Symbols
	Index

