
Max External Tutorial (v. 2.0) Fujinaga

Max External Tutorial
Version 2.1 (January, 1998) by Ichiro Fujinaga

This document is a tutorial for writing external objects for Max 3.5. It assumes that
the reader is familiar with the Max environment and the C Programming Language.
This document is intended to expand upon the material presented by David Zicarelli
in his Writing External Objects for Max (1996) and is based on a tutorial started by
Dale Stamman while at McGill University. It is strongly recommended that the
reader study both documents before attempting to create an external Max object.
Several examples are provided to demonstrate this process. Max externals (external
objects) can be created using Think C, Symantec C++, and CodeWarrier.

This version (2.0) describes the development of Max externals (PowerPC only)
using CodeWarior on PowerPC. If you are using Think C or Symantec C++
compilers or on 68k machines please refer to the version 1 of this document.

Developing Max External Object with CodeWarrior

This tutorial will explain how to create PowerPC native Max externals using
MetroWerks Codewarrior (Pro 2) Refer also to Zicareli (1996, 12–8). A very simple
external object called bang will be created. Refer to Figure 1. for the source code of
bang.c. The explanation of how bang works and writing Max external objects is
provided later. First, some preparations are in order.

Creating a PPC Max External Object (shared library) with CodeWarrior Pro 2

1. Make sure both Max 3.5.x with Software Develpers Kit and CodeWarrior are
properly installed.

2. Launch CodeWarrior IDE 2.1.

3. Select New Project... from the File menu.

4. In the dialog box (Select project stationary), use the
MacOS:C_C++:MacOS Toolbox:MacOS Toolbox PPC Standard
Console:Std C Console PPC. Name the new project, e.g., bang.µ (option-
M). A Project window named bang.µ should open.

5. Remove the ANSI Libraries folder in the project window by clicking on the
name then select Remove Selected Items in the Project menu.

6. Remove the Sources folder in the project window by clicking on the name
then select Remove Selected Items in the Project menu.

7. Select New from the File menu. Enter the C source code into this window or
copy a source file (bang.c) into the folder then drag-and-drop the file into the
Project window.

8. Select Add Files... from the Project menu to add MaxLib, which can be found
in Max::Software Development Kit::Max #includes, to the project. (Close
the Access Path message box.) If you are writing MSP externals, you will
also need to add SoundLib and Max Audio Library.

January 15, 1998 1 5:14 PM

Max External Turorial (v. 2.0) Fujinaga

9. Select PPC Std C Console Settings... from the Edit menu. Select PPC
Target from the Target Settings Panels. Change the Project Type from
Application to Shared Library, Change the File Name to name of the object,
e.g., bang, Creator to max2, and File Type to ????.

10. Select PPC Linker from the Target Settings Panels. Uncheck Generate
SYM File. Type main in Main: under EntryPoints.

11. Select PPC PEF from the Target Settings Panels. Check Expand
Uninitialized Data. Close the PPC Debug MacOS Toolbox Settings
window and save it.

12. To compile the code, select Make from the Project menu.

13. Run Max on a PPC Mac. Create a new patcher and create a new box. Type the
object name into the box and external object will be created. The location of the
object should be specified in the File Preferences... in the Options menu of
Max.

[see also Zicarelli (1996, 12–4)]

// bang.c -- A very simple Max external object.
// Outputs a bang when a bang is received.
// 97/03/08 IF
// 98/01/13 IF CodeWarrior/PPC only version

#include "ext.h" // Required for all Max external objects

void *this_class; // Required. Global pointing to this class

typedef struct bang // Data structure for this object
{

Object b_ob; // Must always be the first field; used by Max
void *b_out; // Pointer to outlet. need one for each outlet

} Bang;

// Prototypes for methods: need a method for each incoming message
void *bang_new(void); // object creation method
void bang_bang(Bang *bang); // method for bang message

void main(void)
{

// set up our class: create a class definition
setup(&this_class, (method) bang_new, 0L, (short)sizeof(Bang), 0L, 0);

addbang((method) bang_bang); // bind method "bang_bang" to the "bang" message
}

void *bang_new(void)
{

Bang *bang;

// create the new instance and return a pointer to it
bang = (Bang *)newobject(this_class);

bang->b_out = bangout(bang); // create a bang outlet

return(bang); // must return a pointer to the new instance
}

void bang_bang(Bang *bang)
{

outlet_bang(bang->b_out); // simply bang!
}

Figure 1. Source code for bang.c

January 15, 1998 2 5:14 PM

Max External Tutorial (v. 2.0) Fujinaga

Writing Max External Objects

To create an external Max object, you write a code resource (68k) or a shared library
(PPC). When you type the name of your object into an empty box in a Max patcher
window, its code resource file is opened and its contents loaded into memory. The
object is then created and able to receive messages from the Max environment. How
your object will respond to the various messages is determined by the code you have
written.

Your code for an external Max object will consist of a main function and functions
(methods) that respond to specific Max messages sent to your object by the Max
environment.

The sturcture of a minimal external object can be divided into four sections:
• intialization\
• main()
• definition of the method to create a new object
• definition of methods that bind to other messages

The intializations consists of the necessary #include files, object structure definition,
global variable declarations, and function prototypes. The main function, which is
called only once when the user types the name of your object into a box in a Max
patcher window for the first time, will define your objects class via setup()
function and binds methods that will be used for incoming messges. The only
requisite method for any class definition is the method that creates new objects.
Within this method, memory for the new object is allocated and inlets and outlets are
defined. Finally, methods that respond to other messages and other functions are
defined. An explantion of each of these four sections are given below using a very
simple object called bang, which simply outputs a bang upon a bang input. (See
Figure 1 for the complete source code.)

The bang object: Initialization

The following lines are required for all objects:

#include "ext.h" // Required for all Max external objects
void *this_class; // Required. Global pointing to this class

The next step is to define a data structure for the bang Max object. This structure
must start with a field called an Object. The Object contains references to the bang
object’s class definition as well as some other information. It is used by Max to
communicate with the bang object. The following is the data structure for the bang
object:

typedef struct bang // Data structure for this object
{

Object b_ob; // Must always be the first field; used by Max
void *b_out; // Pointer to an outlet

} Bang;

It is a Max convention to start the names of each field in the data structure with a
lower case letter followed by an underscore (e.g. b_out).

After the object’s data structure has been declared, the class methods that will
respond to Max messages need to be declared. Your object will do its work by
responding to messages from the Max environment. Objects commonly receive
integer and float messages in their inlets. Your object’s methods will process these
numbers in some way and then send out messages using the object’s outlets.

January 15, 1998 3 5:14 PM

Max External Turorial (v. 2.0) Fujinaga

Your code must include methods (functions) that can respond to each message your
Max object will receive. The bang object will receive a “new” message when
someone types its name into a box in a Max patcher window. Therefore it is
necessary to provide a method that will handle this message and create a new
instance of the bang object. The bang object is also expected to sent out a “bang”
message on the outlet, upon a receipt of a “bang” in the left inlet. Methods will have
to be written to handle this message. The declaration (prototypr) of these methods is
shown below.

// Prototypes for methods: need a method for each incoming message
void *bang_new(void); // object creation method
void bang_bang(Bang *d); // method for bang message

The bang object: main()

When your object is created by Max for the first time, Max will load your code
resource into memory and create the first instance of your class. At this time, Max
will call your code resource’s main function once and only once. The main function
specifies how your object should be initialized. The main function needs to do the
following:

1. Set up your class: allocate memory for the object and specify methods for the
creation of instances of your object.

2. Define messages that the object can respond to and bind each message to a
method.

Here is the main() function of the bang object:

void main(void) // main receives a copy of the Max function macros table
{

// set up our class: create a class definition
setup((&this_class, (method) bang_new, 0L, (short)sizeof(Bang), 0L, 0);

addbang((method) bang_bang); // bind method "bang_bang" to the "bang" message
}

The setup function creates a definition of the bang object class, which will be used
by the bang_new method to create new instances of the bang object. In the above
call to the setup function for the bang object, this_class is the global variable
declared at the beginning of the code. The second argument, bang_new, is a
pointer to the instance creation method bang_new. This is the method that will be
called when the object receives a “new” message from the Max environment. Since
the bang object does not require any special memory cleanup when it is removed
from the Max environment, 0L is used in place of a pointer to a bang_free
method. The memory occupied by the bang object and all of its inlets and outlets
will be removed automatically by Max.

The next argument to setup allocates memory for the class. In this example,
sizeof(Bang) is used to determine the number of bytes of memory needed.
Since we are not creating a user interface object, the next argument to menufun will
be 0L. The final 0 indicates that there is no argument to this object.

As mentioned above, the code must provide a method for each message you want to
respond to. In the main function, each method should respond to the message with
the functions: addint, addinx, addbang, addmess, or addft. Since
the bang object only responds to the “bang” message, only one method,
bang_bang, is needed. In order to bind the bang_bang method, which will output
a “bang”, to a “bang” input message, we use the routine addbang(bang_bang).

January 15, 1998 4 5:14 PM

Max External Tutorial (v. 2.0) Fujinaga

The bang object: The object creation function

When a user creates a new instance of your object by typing the name bang into a
box in a Max patcher window, opening a file with your object already in it, or by
cutting and pasting your object, your object will receive a “new” message. This is a
request to your creation method to create an object that is an instance of your class.
The creation function then handles any arguments that were typed in the box in the
Max patcher window, initializes data fields, and creates the object’s inlets and
outlets. Finally, the creation function returns a pointer to the new instance of the
object. These actions are shown in the method bang_new listed below.

void *bang_new(void)
{

Bang *bang;

// create the new instance and return a pointer to it
bang = (Bang *)newobject(this_class);

bang->b_out = bangout(bang); // create a bang outlet

return(bang); // must return a pointer to the new instance
}

The function, newobject, is used to create a new instance of the class bang. The
argument, this_class, is the global variable that points to this class. This pointer
was set by the setup function in the main function.

When your object is created, Max automatically creates one inlet, but other inlets and
outlets must be explicitly defined. Using the bangout function, an outlet (that only
outputs “bang” messages) will be created and returns a pointer, which will be stored
in the object’s data field b_out.

Finally, bang, the pointer to the new instance of our object that was returned by
the call to newobject, must be returned from the function bang_new.

Now we have a new instance of our object represented as a “bang” box in a Max
patcher window. It is now waiting to receive “bang” messages that will cause its
method to do the specified operation, namely, ouput a “bang”. We will now examine
how this is done.

The bang object: Handling the “bang” message

void bang_bang(Bang *bang)
{

outlet_bang(bang->b_out); // simply bang!
}

When a “bang” message arrives at the object’s left inlet, the bang_bang function
(method) is called. This happens, because in the main() the “bang” messge, was
bound to this function bang_bang() by the function:

addbang(METHOD bang_bang);

The bang_bang method simply sends a “bang” messages via the outlet. The
method calls the Max function outlet_bang to cause the “bang” to be output. In
the object creation function, bang_new (see above), an outlet was created for this
object with the statement:

bang->b_out = bangout(bang).

This function returned a pointer to the object’s outlet which we stored in the struct
field bang->b_out.

January 15, 1998 5 5:14 PM

Max External Turorial (v. 2.0) Fujinaga

The add object: Inlets and arguments

A simple object add will be used to introduce how to add inlets and arguments to
your object. This object basically functions as the Max built-in “+” object. It ouputs
the sum of two integers: the number coming in on the left inlet plus the number
stored in the object which can be either specified via the right inlet or in the
argument inside the object’s box. The source code is shown in Figure 2.

/* add.c -- 97/03/24 IF (based on Dale Stammen's diff)
** 98/01/14 for PowerPC only
** This code resource defines an object similar to the standard "+" max object.
** The add object has 2 inlets and 1 outlet. Left inlet accepts bang and integers,
** right inlet accepts integers, and outlet outputs the adderence of the 2 inputs.
*/

#include "ext.h" // Required for all Max external objects

typedef struct add // Data structure for this object
{

Object a_ob; // Must always be the first field; used by Max
long a_valleft; // Last value from left outlet
long a_valright; // Last value from right outlet
long a_valtotal; // Value to be sent to outlet
void *a_out; // Pointer to outlet, need one for each outlet

} Add;

// Prototypes for methods: you need a method for each message you want to respond to
void *add_new(long value); // Object creation method
void *add_int(Add *add, long value); // Method for message "int" in left inlet
void *add_in1(Add *add, long value); // Method for message "int" in right inlet
void *add_bang(Add *add); // Method for bang message
void *add_assist(Add *add, Object *b, long msg, long arg, char *s); // Assistance method

void main(void) // main receives a copy of the Max function macros table
{

// set up our class: create a class definition
setup(&this_class, (method)add_new, 0L, (short) sizeof(Add), 0L, A_DEFLONG, 0);

addbang((method)add_bang); // bind method "add_bang" to the "bang" message

addint((method)add_int); // bind method "add_int" to int's received in the left
inlet

addinx((method)add_in1,1); // bind method "add_in1" to int's received in the right
inlet
}

/**
add_new(long value)

inputs: value -- the integer from the typed argument in the object box
description: creates a new instance of our class add. Called once when the code

resource is loaded.
returns: pointer to new instance
***/

void *add_new(long value)
{

Add *add;

add = (Add *)newobject(this_class); // Create new instance and return a pointer to
it

add->a_valright = value; // Initialize the addition value
add->a_valleft = 0;
add->a_valtotal = value;

add->a_out = intout(add); // Create our outlet

January 15, 1998 6 5:14 PM

Max External Tutorial (v. 2.0) Fujinaga

intin(add,1); // Create the right inlet

return(add); // Must return a pointer to the new instance
}

/**
add_int(Add *a, long value)

inputs: add - pointer to Add object
value - value received in the inlet

description: adds the right value with the incoming value. Stores the new left inlet
value as well as the total and outputs the total.

returns: nothing
***/

void *add_int(Add *add, long value)
{

add->a_valleft = value; // Store the value received in the left inlet

add->a_valtotal = add->a_valleft + add->a_valright; // Add the right inlet value with
the left

add_bang(add); // Call bang method right away since it's the left inlet
}

/***
add_in1(Add *add, long value)

inputs: add - pointer to our object
value - value received in the inlet

description: stores the new right value, calculates and stores the new adderence between
the left and right value

returns: nothing
***/

void *add_in1(Add *add,long value)

{
add->a_valright = value; // Store the value

add->a_valtotal = add->a_valleft + value; // Update new total
}

/***
add_bang(Add *a)

inputs: add - pointer to our object
description: method called when bang is received: it outputs the current sum of the left

and right values
returns: nothing
***/

void *add_bang(Add *add)

{
outlet_int(add->a_out, add->a_valtotal); // simply put out the current total

}

Figure 2. Source code for the add object

January 15, 1998 7 5:14 PM

Max External Turorial (v. 2.0) Fujinaga

The add object: Initialization

The data structure for the add object is shown below. Note that three values are
stored within the object.

typedef struct add // Data structure for this object
{

Object a_ob; // Must always be the first field; used by Max
long a_valleft; // Last value sent to left outlet
long a_valright; // Last value sent to right outlet
long a_valtotal; // Value to be sent to outlet
void *a_out; // Pointer to outlet, need one for each outlet

} Add;

In the setup function in main() now has A_DEFLONG argument indicating that
the object accept one integer argument in the object box.

setup(&this_class, add_new, 0L, (short)sizeof(Add), 0L, A_DEFLONG, 0);

Three methods are bound with the three typs of messages: “bang” in the left inlet,
interger entered in the left inlet, and integer entered in the right inlet.

addbang((method)add_bang); // bind "add_bang" to the "bang" message
addint((method)add_int); // bind "add_int" to int received in the left inlet
addinx((method)add_in1,1); // bind "add_in1" to int received in the right inlet

The add object: The object creation function

Unlike the bang object above, the add_new function is passed an integer argument
from the object box that the user may type. The object’s variables are initialized, an
outlet that output intger is created and the right inlet, which accepts integer is also
created:

void *add_new(long value)
{

Add *add;

add = (Add *)newobject(this_class); // Create new instance and return a pointer to it

add->a_valright = value; // Initialize the add values
add->a_valleft = 0;
add->a_valtotal = value;

add->a_out = intout(add); // Create our outlet

intin(add,1); // Create the right inlet

return(add); // Must return a pointer to the new instance
}

The add object: Methods

The add_int method is called when an integer comes in on the left inlet. It stores
the value in a_valleft, adds that value with a_valright, storing the result in
a_valtotal, then calls the add_bang method to ouput the result.

void *add_int(Add *add, long value)
{

add->a_valleft = value; // Store the value received in the left inlet

add->a_valtotal = add->a_valleft + add->a_valright; // Add the right inlet value with
the left

add_bang(add); // Call bang method right away since it's the left
inlet
}

January 15, 1998 8 5:14 PM

Max External Tutorial (v. 2.0) Fujinaga

The add_in1 method is called when an integer comes in on the right inlet. It stores
the new value in a_valright then updates the val_total.

void *add_in1(Add *add,long value)
{

add->a_valright = value; // Store the value
add->a_valtotal = add->a_valleft + value; // Update new total

}

The add_bang method is called when a “bang” comes in the left inlet or, indirectly
via add_int method, when an integer comes in the left inlet.

void *add_bang(Add *add)
{

outlet_int(add->a_out, add->a_valtotal); // simply put out the current total
}

The add_assist object: Adding to the Max’s New Object list and assistance messages

Two enhancements will be added to the add object: the object (add_assist) will be
included in the Patcher’s New Object list and the assistance messages, which
appears when the mouse is pointed at object’s inlets and outlets. The complete listing
of add_assist object is in Figure 3.

To make an entry in the New Object list is very simple. All you need to do is to
include the following function in your main():

finder_addclass("All Objects", "add_assist"); // add class to the New object list

If you want to add the object to the "Arithmetic/ Logic" list, you could add the
following:

finder_addclass("Arithmetic/Logic", "add_assist");

In order to add the assistance messages: a method must be defined, which must be
bound to the Max message “assist”, and since we will be using a resource for the
string for the assistance messages, we need to copy the string from the resource. The
binding and the copying is done in the main() as follows:

addmess((method)add_assist, "assist", A_CANT, 0); // bind method add_assist to the
// assistance message

rescopy('STR#', ResourceID); // copy the assistance messages resource into Max’s temp file

ResourceID is a number that you define when creating the string resource. The
rescopy function copies the string to Max’s temporary file (Max Temp 1 in the
Temporary Items folder). How to create this resource is explained next. The
explanation of the add_assist method will follow.

January 15, 1998 9 5:14 PM

Max External Turorial (v. 2.0) Fujinaga

Creating a String Resource in ResEdit 2.1 for a Max External Object

1. Launch ResEdit.

2. Click on the clown to get rid of it.

3. Select New... from the Fi le menu; move to your project folder.

4. Name your resource file with EXACTLY the same name as your project and
append the name with .rsrc. For example, if your project is called
projectname.µ, name your resource projectname.µ.rsrc.

5. Click the New button

6. Select Create New Resource from the Resource menu.

7. Scroll down to the resource type STR# in the Select New Type window.
Make sure you select STR# and not STR. Click on OK.

8. ResEdit will now create a window called STR# ID = 128. Click on the field 1)
*****. Select Insert New Field(s) from the Resource menu. In the box after
The string, type in your external Max object's assistance string for the first
inlet. You may use a maximum of 60 characters. Repeat step 8 for as many
inlets and outlets as your Max object will need. Create them in order, with the
first string being the message for inlet 1, the second for inlet 2.

9. Select Get Resource Info from the Resource menu. Enter your resource ID
number in the field ID:. This number MUST match the resource ID number you
define in your Max object. If you wish, you may type in the name of your
resource in the field Name. This will help you remember what the resource is
used for in the “resource picker window”.

10. Save your resource. Make sure it is saved to your project folder and that it has
the same name as your project file with .rsrc added to the end of the name.

The add_assist object: add_assist method

void *add_assist(Add *add, Object *b, long msg, long arg, char *s)
{

EnterCallback();

// copy the appropriate message to the destination string
assist_string(ResourceID, msg, arg, 1, 3, s);
ExitCallback();

}

In the argument list for add_assist, d is a pointer to our object, b is a pointer to the
object’s box in the Max patcher window. msg will be one of two values: 1 if the
cursor is over an inlet or 2 if it is over an outlet. arg is the inlet or outlet number
starting at 0 for the left inlet. s is where you will copy a C string containing your
assistance information.

The function assist_string handles the posting of the assistance string in the
assistance area of the Max patcher window. It will copy the correct string from the
resource in the memory specified by ResourceID. (ResourceID was defined at the
beginning of the code.) This resource was copied into the Max’s temp file by
rescopy() in the main function. msg specifies if either an inlet or outlet was
selected and arg is the inlet or outlets number. The argument 1 specifies that the first
string in the resource corresponds to the first inlet. Likewise, the argument 3
specifies that the third string in the resource goes with the first outlet. The function
assist_string will copy the selected resource string into s, which will then be
displayed in the assistance area of the patcher window.

January 15, 1998 10 5:14 PM

Max External Tutorial (v. 2.0) Fujinaga

/* add_assist.c -- 97/03/24 IF (based on Dale Stammen's diff)
** 98/01/14 for PowerPC only IF
** This code resource defines an object similar to the standard "+" max object.
** The add object has 2 inlets and 1 outlet. Left inlet accepts bang and integers,
** right inlet accepts integers, and outlet outputs the adderence of the 2 inputs.
*/

#include "ext.h" // Required for all Max external objects

void *this_class; // Required. Global pointing to this class

#define ResourceID 3999 // resource ID# for assistance strings created in ResEdit

typedef struct add // Data structure for this object
{

Object a_ob; // Must always be the first field; used by Max
long a_valleft; // Last value sent to left outlet
long a_valright; // Last value sent to right outlet
long a_valtotal; // Value to be sent to outlet
void *a_out; // Pointer to outlet, need one for each outlet

} Add;

// Prototypes for methods: you need a method for each message you want to respond to
void *add_new(long value); // Object creation method
void *add_int(Add *add, long value); // Method for message "int" in left inlet
void *add_in1(Add *add, long value); // Method for message "int" in right inlet
void *add_bang(Add *add); // Method for bang message
void *add_assist(Add *add, Object *b, long msg, long arg, char *s); // Assistance method

void main(void) // main receives a copy of the Max function macros table
{

// set up our class: create a class definition
setup(&this_class, (method)add_new, 0L, (short) sizeof(Add), 0L, A_DEFLONG, 0);

addbang((method)add_bang); // bind method "add_bang" to the "bang" message
addint((method)add_int); // bind method "add_int" to int's received in the

// left inlet
addinx((method)add_in1,1); // bind method "add_in1" to int's received in the

// right inlet
addmess((method)add_assist, "assist",A_CANT,0); // bind method "add_assist" to

// the assistance message
rescopy('STR#', ResourceID); // copy the assistance messages resource into Max’s

// temp file
finder_addclass("All Objects", "add_assist"); // add class to the New object list

}

/**
add_new(long value)

inputs: value -- the integer from the typed argument in the object box
description: creates a new instance of our class add.

Called once when the code resource is loaded.
returns: pointer to new instance
***/

void *add_new(long value)
{

Add *add;

add = (Add *)newobject(this_class); // Create the new instance
add->a_valright = value; // Initialize the addition value
add->a_valleft = 0;
add->a_valtotal = value;
add->a_out = intout(add); // Create our outlet
intin(add,1); // Create the right inlet
return(add); // Must return a pointer to the new instance

}

January 15, 1998 11 5:14 PM

Max External Turorial (v. 2.0) Fujinaga

/**
add_int(Add *a, long value)

inputs: add - pointer to Add object
value - value received in the inlet

description: adds the right value with the incoming value. Stores the new left inlet
value as well as the total and outputs the total.

returns: nothing
***/

void *add_int(Add *add, long value)
{

add->a_valleft = value; // Store the value received in the left inlet

add->a_valtotal = add->a_valleft + add->a_valright; // Add the right with the left
add_bang(add); // Call bang method right away since it's the left inlet

}

/***
add_in1(Add *add, long value)

inputs: add -- pointer to our object
value -- value received in the inlet

description: stores the new right value, calculates and stores the
new adderence between the left and right value

returns: nothing
***/

void *add_in1(Add *add,long value)
{

add->a_valright = value; // Store the value
add->a_valtotal = add->a_valleft + value; // Update new total

}

/***
add_bang(Add *a)

inputs: add -- pointer to our object
description: method called when bang is received: it outputs the current

sum of the left and right values
returns: nothing
***/

void *add_bang(Add *add)
{

outlet_int(add->a_out, add->a_valtotal); // simply put out the current total
}

/***
void *add_assist(a, b, msg, arg, s)

inputs: add - pointer to Add object
b - pointer to the Add object's box
msg - specifies whether request for inlet or outlet info
arg - selected inlet or outlet number
s - destination for assistance string

description: method called when assist message is received: it outputs the correct
assistance message string to the patcher window

returns: nothing
***/

void *add_assist(Add *add, Object *b, long msg, long arg, char *s)
{

// copy the appropriate message to the destination string
assist_string(ResourceID, msg, arg, 1, 3, s);

}

Figure 3 Source code for add_assist object

January 15, 1998 12 5:14 PM

Max External Tutorial (v. 2.0) Fujinaga

The minimum object: Float, Atom, and list

Thus far, the only data type we have been using is an integer type, namely long. In
this section, we’ll introduce the float data type, the Atom data type, and the list,
which is an array of Atoms.

The float data type is similar to long except that it involves floating-point numbers.
Max provides macros and functions to handle floats very similar to longs, e.g., to add
left inlets you would use:

addint(long_method);

for inlet that accepts long and use:

addfloat(float_method);

for inlet that accepts float.

An Atom is a special data type (a structure) that allows any of the four data types
(long, float, Symbol, Object) used in Max to be stored. Here is how it is defined:

union word /* union for packing any data type */
{

long w_long;
float w_float;
Symbol *w_sym;
Object *w_obj;

};

typedef struct atom // and an atom which is a typed datum
{

short a_type; // from the defs below
union word a_w;

} Atom;

The struct member a_type specifies what type of data is stored in a_w, and it could
be any of the following:

#define A_NOTHING 0 // ends the type list
#define A_LONG 1 // Type-checked integer argument
#define A_FLOAT 2 // Type-checked float argument
#define A_SYM 3 // Type-chceked symbol argument
#define A_OBJ 4 // for argtype lists; passes the value of sym
#define A_DEFLONG 5 // long but defaults to zero
#define A_DEFFLOAT 6 // float, same default
#define A_DEFSYM 7 // symbol, defaults to ""

A list in Max is simple an array of Atoms. A list will be used if you declare a method
to receive its arguments with A_GIMME, typically in either the setup function:

setup(&class, (method)minimum_new, 0L, (short)sizeof(Minimum), 0L, A_GIMME, A_NOTHING);

 or a method that responds to the “list” message:

addmess((method)minimum_list, "list", A_GIMME, A_NOTHING);

Then your method, minimum_list in the example above, will be passed a list.
This is done by argc (short) and argv (Atom *). argc is the number of
Atoms and argv points to the first Atom in the array. Here is an example:

void minimum_list(Minimum *x, Symbol *s, short argc, Atom *argv)

The Symbol *s contains the message itself (in this case, “list”). The object minimum
illustrates use of these data types (see Figure 4).

January 15, 1998 13 5:14 PM

Max External Turorial (v. 2.0) Fujinaga

/* minimum.c -- output the minimum of a group of numbers ------- */
// From the Max 3.5 distribution. Slightly modified by IF 97/04/02
// For PowerPC only 98/01/14 IF
// Topics covered: floats, Atoms, lists

#include "ext.h"

#define MAXSIZE 32
#define ResourceID 3008

typedef struct minimum
{

struct object m_ob;
Atom m_args[MAXSIZE];
long m_count;
short m_incount;
short m_outtype;
void *m_out;

} Minimum;

void *class;
void DoAtomMin(Atom *min, Atom *new);
void minimum_bang(Minimum *x);
void minimum_int(Minimum *x, long n);
void minimum_in1(Minimum *x, long n);
void minimum_float(Minimum *x, double f);
void minimum_ft1(Minimum *x, double f);
void minimum_list(Minimum *x, Symbol *s, short ac, Atom *av);
void minimum_assist(Minimum *x, void *b, long m, long a, char *s);
void *minimum_new(Symbol *s, short ac, Atom *av);

void main(fptr *f)
{

setup((&class, (method)minimum_new,0L, (short)sizeof(Minimum),
0L, A_GIMME, 0);

addbang((method)minimum_bang);
addint((method)minimum_int);
addinx((method)minimum_in1, 1);
addfloat((method)minimum_float);
addftx((method)minimum_ft1, 1);
addmess((method)minimum_list, "list", A_GIMME, 0);
addmess((method)minimum_assist, "assist", A_CANT, 0);
finder_addclass("Arith/Logic/Bitwise", "minimum");
rescopy('STR#', ResourceID);

}

void DoAtomMin(Atom *min, Atom *new) // check to see if new minimum,
//depending on the data types

{
if (min->a_type==A_NOTHING) // At startup set minimum
{

*min = *new;
return;

}
if (min->a_type==A_FLOAT) // old is FLOAT
{

if (new->a_type==A_FLOAT) // new is FLOAT
{

if (new->a_w.w_float < min->a_w.w_float)
min->a_w.w_float = new->a_w.w_float;

}
else //new is LONG, old is FLOAT
{

if ((float)new->a_w.w_long < min->a_w.w_float)
min->a_w.w_float = (float)new->a_w.w_long;

}
}
else // old is LONG
{

if (new->a_type==A_LONG) // new is LONG
{

January 15, 1998 14 5:14 PM

Max External Tutorial (v. 2.0) Fujinaga

if (new->a_w.w_long < min->a_w.w_long)
min->a_w.w_long = new->a_w.w_long;

}
else // new is float, old is LONG
{

if ((long)new->a_w.w_float < min->a_w.w_long)
min->a_w.w_long = (long)new->a_w.w_float;

}
}

}

void minimum_bang(Minimum *x)
{

register short i;
Atom themin;
long res;
double fres;

themin.a_type = A_NOTHING;
for (i=0; i < x->m_count; i++) // check if any of the input is a new minimum

DoAtomMin(&themin,x->m_args+i);
if (x->m_outtype==A_LONG)
{

if (themin.a_type==A_LONG)
res = themin.a_w.w_long;

else
res = (long)themin.a_w.w_float;

outlet_int(x->m_out,res);
}
else
{

if (themin.a_type==A_FLOAT)
fres = themin.a_w.w_float;

else
fres = (float)themin.a_w.w_long;

outlet_float(x->m_out,fres);
}

}

void minimum_int(Minimum *x, long n)
{

SETLONG(x->m_args,n);
minimum_bang(x);

}

void minimum_in1(Minimum *x, long n)
{

SETLONG(x->m_args+1,n);
x->m_count = 2;

}

void minimum_float(Minimum *x, double f)
{

SETFLOAT(x->m_args,f);
minimum_bang(x);

}

void minimum_ft1(Minimum *x, double f)
{

SETFLOAT(x->m_args+1,f);
x->m_count = 2;

}

void minimum_list(Minimum *x, Symbol *s, short ac, Atom *av)
{

register short i;

if (ac >= MAXSIZE)
ac = MAXSIZE - 1;

for (i=0; i < ac; i++,av++)
{

if (av->a_type==A_LONG)
SETLONG(x->m_args+i,av->a_w.w_long);

else if (av->a_type==A_FLOAT)
SETFLOAT(x->m_args+i,av->a_w.w_float);

}
x->m_count = ac;
minimum_bang(x);

January 15, 1998 15 5:14 PM

Max External Turorial (v. 2.0) Fujinaga

}

void minimum_assist(Minimum *x, void *b, long m, long a, char *s)

{
assist_string(ResourceID, m, a, 1, 3, s);

}

void *minimum_new(Symbol *s, short ac, Atom *av)
{

Minimum *x;

x = (Minimum *)newobject(class);
x->m_count = 2;
if (ac)
{

x->m_args[1] = *av; // intialize with the first argument
if (av->a_type==A_LONG)
{

x->m_args[0].a_type = x->m_outtype = A_LONG;
x->m_out = intout(x);
x->m_args[0].a_w.w_long = 0;
intin(x, 1);

}
else if (av->a_type==A_FLOAT)
{

x->m_args[0].a_type = x->m_outtype = A_FLOAT;
x->m_out = floatout(x);
x->m_args[0].a_w.w_float = 0;
floatin(x, 1);

}
}
else // if no argument, set to a defualt
{

x->m_outtype = A_LONG;
intin(x,1);
x->m_out = intout(x);
SETLONG(x->m_args + 1, 0L);
SETLONG(x->m_args, 0L);

}
return (x);

}

Figure 4. Source code for the minimum object

January 15, 1998 16 5:14 PM

Max External Tutorial (v. 2.0) Fujinaga

More Atoms and list

Max uses Atoms when passing messages between objects. If your object is going to
be able to send a list out of its outlet, it will have to use a list of Atoms. Likewise, if
you wish to receive lists, or more than 7 typed data in arguments from your object’s
box in the Max patcher, you will again have to deal with Atoms. Remember, Atoms
are simply a struct that have a field of type union that allows them to contain
different types of data.

It is now necessary to examine the structure of a message in Max. Consider the
following message box:

This message box contains 5 items, the symbol “play”, the long integers 100 and
200, the float 2.5, and finally the symbol “stop”. If this message is sent to your
object, your object will actually receive the message “play”, followed by a list of 4
atoms containing 100, 200, 2.5 and “stop”. In other words, “play” is the message and
the remaining items are its arguments. One way to make your object understand this
message is to use addmess() in its main function.

addmess(max_play, “play”, A_LONG, A_LONG, A_FLOAT, A_SYM, 0); // bind method max-
play to the “play” message”

or with optional arguments, so that if some of the arguments are not specified by the
user, the object will set them to a default values:

addmess(max_play, “play”, A_DEFLONG, A_DEFLONG, A_DEFFLOAT, A_DEFSYM, 0);

But this approach requires that you always have two longs, a float and a symbol in
the right order. You are also limited to a total of seven arguments using this
declaration method.

There is another way for your object to receive messages and their arguments. When
you declare a method to receive its arguments with A_GIMME, the arguments will
be passed to your object in an argc, argv list. More about this argc, argv stuff later.

In order to tell Max to give you all of the arguments in a message, you bind your
method to the message in your main function with the Max function addmess. For
example, to bind the method atoms_play with the above message you would write in
your main function:

addmess(atoms_play, “play”, A_GIMME, 0); // bind method “atoms_play” to the “play”
message”

This call binds the method atoms_play to the message “play”. Whenever the object
receives the message “play”, Max will call the method atoms_play and pass it the
message and a list of arguments.

A_GIMME tells Max to pass the message and its arguments without typechecking
them. You are now responsible for typechecking them yourself.

You now need to write a method that will be able to receive this message and its
arguments. The method atoms_play would be declared as:

void *atoms_play(Example *a, Symbol *mess, int argc, Atom *argv)

January 15, 1998 17 5:14 PM

Max External Turorial (v. 2.0) Fujinaga

In this function declaration, a is a pointer to your object, mess is pointer to the
message that called this method (in this example the, “play” message). The integer
argc is the number of arguments contained in the atom list and argv is a pointer to an
array of atoms containing the actual arguments. Up to 65,536 arguments can be
received by a method.

If your object receives the message “play 100 200 2.5 stop”, Max will call your play
function. Your atoms_play function will receive a pointer to the symbol “play” in
mess, the integer 4 in argc, and finally a pointer to a list of atoms containing the
values 100 200 2.5 “stop”. The code in Figure 5 shows you how to typecheck and
access the data in the atom list.

#define MAX_ARGS 20

typedef struct example // data structure for this object
{

Object a_ob;
Atom a_list[MAX_ARGS]; // array of Atoms: list
int a_size; // number of Atoms in the list

} Example;

void *atoms_play(Example *a,int argc, Atom *argv)
{

int i;

a->a_size = argc;
if (a->a_size > MAX_ARGS)

a->a_size = MAX_ARGS;

for(i = 0; i < a->a_size; i++)
switch(argv[i].a_type) // type check each argument
{

case A_LONG:
SETLONG(a->a_list + i, argv[i].a_w.w_long);
post(“argument %ld is a long: %ld”, (long) i,argv[i].a_w.w_long);
break;

case A_FLOAT:
SETFLOAT(a->a_list + i, argv[i].a_w.w_float);
post(“argument %ld is a float: %f”, (long) i, argv[i].a_w.w_float);
break;

case A_SYM:
SETSYM(a->a_list + i, argv[i].a_w.w_sym);
post(“argument %ld is a symbol: %s”,(long) i,

argv[i].a_w.w_sym->s_name);
break;

}
}

Figure 5. Typechecking an argc, argv list of atoms

This example receives a list of arguments from Max whenever the object receives the
“play” message. It then checks the type of each Atom in the argv list and stores it
into an internal array of Atoms. Finally, it reports to the Max window the type and
value of the argument.

When working an Atom, you must be able to correctly access its various fields. In
Figure 5, we examine the a_type field of an Atom to determine the type of data
contained in the union. As mentioned above a_type will be either A_LONG,
A_FLOAT, or A_SYM. These constants are declared in the Max #include file
“ext_mess.h”.

Notice that we use the struct notation argv[i].a_type to access the a_type field. It is
also possible to use the pointer argv to access the field, i.e.,
(argv + i)->a_type. You may choose whatever style suits you best.

In the above example, if the Atom contains a long (i.e., a_type == A_LONG), we
want to store the argument into our internal Atom list, a_list as a long. Likewise, if

January 15, 1998 18 5:14 PM

Max External Tutorial (v. 2.0) Fujinaga

(a_type == A_FLOAT) we would store it as a float, and if (a_type == A_SYM) we
would store the argument as a symbol. Max provides several macros for storing an
item into an atom. These are:

SETLONG(Atom *a, long number);
SETFLOAT(Atom *a, float number);
SETSYM(Atom *a, Symbol *s);

Here are the cuurent macro definitions as they appear in Max #include file
“ext_mess.h”.

#define SETSYM(ap, x) ((ap)->a_type = A_SYM, (ap)->a_w.w_sym = (x))
#define SETLONG(ap, x) ((ap)->a_type = A_LONG, (ap)->a_w.w_long = (x))
#define SETFLOAT(ap, x) ((ap)->a_type = A_FLOAT, (ap)->a_w.w_float = (x))

These macros accomplish two things. First the macro sets the a_type field of the
Atom to the correct type. This means that SETLONG will set the a_type field of the
Atom to A_LONG, SETFLOAT sets it to A_FLOAT, and SETSYM sets it to
A_SYM. The macro then puts the long, float, or the pointer to the symbol into the
union a_w. Remember that a pointer to the symbol is stored in the union, and not the
actual symbol.

In the above example we used the following line of code to call SETLONG:

SETLONG(a->a_list + i, argv[i].a_w.w_long);

In this call, a is a pointer to our Object. We use it to access the array of Atoms called
a_list that is in our object’s data structure. Since SETLONG requires a pointer to an
Atom, we must give it a pointer to the i th Atom in the array. When i == 0, a->a_list
+ i is a pointer to the first Atom in the array a_list. Likewise, if i == 5, a->a_list +
i is a pointer to the 6th Atom in the array.

Notice how we access the long field of the union a_w in the argv Atom list. We write
argv[i] to access the i th Atom in the argv list. argv[i].a_w accesses the union a_w
field of the struct atom. Finally, argv[i].a_w.w_long accesses the long value stored in
the union a_w. We first access the atom, then the union, and finally the data.

Another way of putting a long value into an Atom is:

a->a_list[i].a_type = A_LONG;
a->a_list[i].a_w.w_long = 100;

Using this method you are responsible for setting the a_type field yourself.

You can use SETFLOAT the same way as SETLONG. SETFLOAT will set the
a_type field to A_FLOAT, and place the float value in the float field of the union
a_w (i.e., a_w.w_float). To access a float field of an Atom in the argv list in the
above example, we write:

argv[i].a_w.w_float or (argv + i)->a_w.w_float

Likewise, to access this value in our internal array of Atoms we write:

a->a_list[i].a_w.w_float or (a->a_list + i)->a_w.w_float

When you want to store a symbol into an Atom, or access a symbol already in an
Atom, you must remember that a pointer to the symbol is stored in the Symbol field
of the union a_w. The field in the union a_w is defined as Symbol *w_sym.
Therefore, in order to store a symbol into an Atom you store the pointer to the
symbol and not the symbol itself. Likewise, when you access a symbol, you need to
access what the pointer in the Symbol field points to. In other words, to get at a
symbol, there is yet another stage of indirection.

January 15, 1998 19 5:14 PM

Max External Turorial (v. 2.0) Fujinaga

In the above example, we use SETSYM to set the pointer to the symbol contained in
the argv list into our internal Atom list a_list. Therefore, SETSYM wants a pointer to
the symbol as its second argument.

SETSYM(a->a_list + i, argv[i].a_w.w_sym);

Notice how we post the actual symbol to the Max window. We use the following
post function:

post(“argument %ld is a symbol: %s”, (long) i, argv[i].a_w.w_sym->s_name);

Note that in order to access our actual symbol, we must access what the symbol
pointer points to:

argv[i].a_w.w_sym->s_name

In the Max #include file “ext_mess.h” a symbol is defined as the following struct:

struct symbol
{

char *s_name; /* name */
struct object *s_thing; /* possible binding to an object */

} Symbol;

Therefore, in order to access a symbol in an Atom, first access the Atom, then the
union a_w, then the w_sym field and finally the s_name field of the Symbol, i.e.,
argv[i].a_w.w_sym->s_name.

Now that you have a list of Atoms in your object you can send it to an outlet. To do
this you need to create a list outlet using the Max function:

Outlet *listout (void *owner)

In our example we would create the list outlet in the object’s creation function
example_new.

a->a_list_outlet = listout(Example *x);

To send the internal list a_list out this outlet, one would use the Max function:

void *outlet_list(Outlet *x, Symbol *msg, int argc, Atom *argv);

We would call this function with the following arguments:

outlet_list(a->a_list_outlet, “list”, a->a_size, &(a->a_list));

where a->a_list_outlet is a pointer to the outlet we created with listout, “list” is the
message to be sent, a->a_size is the number of Atoms in the internal Atom list, and
&(a->a_list) is a pointer to the first Atom in this list.

January 15, 1998 20 5:14 PM

Max External Tutorial (v. 2.0) Fujinaga

The atoms object:

Notice the addmess functions:

addmess(atoms_list,"play",A_GIMME,0); // bind method "atoms_list" to "play" message
addmess(atoms_list,"list",A_GIMME,0); // bind method "atoms_list" to "list" message

Both of these lines of code cause the function atoms_list to be called when the
object receives either the “play” message of the “list” message. Also notice that we
requested that Max send to our object the arguments of the message as a list of
atoms. This was accomplished by using A_GIMME.

The list Method

This method receives a list of atoms from Max contain the items of the list sent to
your object. The number of items (or atoms) in the list is in argc. The actual atoms
are stored in argv. Actually these are pointers to atoms. We then check each atom for
its type before we put it in our list. The list method then sends the list of atoms out its
outlet using outlet_list. Notice we use &(a->a_list) to point to our list of
Atoms.

The bang Method

When our object receives the bang message, it simply sends the current contents of
its list out its outlet using the outlet_list function.

The post Method (Zicarelli 1996, 71)

When the object receives the “bang” message, it posts the contents of its Atom list to
the Max window using the function postatom (Zicarelli 1996, 72). Here is how
to post a list of atoms:

January 15, 1998 21 5:14 PM

Max External Turorial (v. 2.0) Fujinaga

The mymetro object: Clock routines

This example uses the Clock object (Zicarelli 1996, 60–3), which allows scheduling
in Max. The routines associated wuth the Clock objects allows events to happen in
the future. This is accomplished by assigning a functin to be executed when the clock
goes off and indicate when the clock is to go off. More specifically:

1. Use clock_new() to create a Clock object and assign the function to be
executed when it goes off.

2. Use clock_set() or clock_delay() to schedule the execution of the
clock function at absolute time or relative time, respectively. Zicarelli
recommends using clock_delay rather than clock_set (Zicarelli 1996,
61).

3. When the Clock is no longer needed, it should be removed with freeobject
function.

/* This code resource defines the object "mymetro" which is similar to the standard
"metro" Max object. The metro object has 2 inlets and 2 outlets.

"bang" in left inlet starts metronome
"stop" in left inlet stops metronome
integer in right inlet sets tempo in ms

left output sends bangs at each metronome interval
right outlet outputs current time

The object also posts messages to the Max window indicating the current state of
mymetro.

*/

#include "ext.h" // Required for all Max external objects

#define ResourceID 4999 /* resource ID# for assistance strings */
#define DEFAULT_TEMPO 1000
#define MIN_TEMPO 40

typedef struct metro /* data structure for this object */
{

Object m_ob; /* must always be the first field; used by Max */
void *m_clock; /* pointer to clock object */
long m_interval; /* tempo in milliseconds */
void *m_bang_outlet; /* pointers to bang outlet */
void *m_time_outlet; /* pointers to time outlet */

} Metro;

void *metro_new(long value);
void *metro_in1(Metro *m, long value);
void *metro_bang(Metro *m);
void *metro_assist(Metro *m, Object *b, long msg, long arg, char *s);
void *metro_free(Metro *m);
void *metro_stop(Metro *m);
void *clock_function(Metro *m);

void *class; // Required. Global pointing to this class

void main(void)
{

/* set up our class: create a class definition */
setup(&class, (method)metro_new, (method)metro_free, (short) sizeof(Metro), 0L,

A_DEFLONG, 0);

/* bind method "metro_bang" to the "bang" message */
addbang((method)metro_bang);

January 15, 1998 22 5:14 PM

Max External Tutorial (v. 2.0) Fujinaga

/* bind method "metro_in1" to int's received in the right inlet */
addinx((method)metro_in1,1);

/* bind method "metro_stop" to the "stop" message" */
addmess((method)metro_stop,"stop",0);

/* bind method "metro_assist" to the assistance message" */
addmess((method)metro_assist,"assist",A_CANT,0);

/* copy the assistance messages resource into the Max temp file */
rescopy('STR#',ResourceID);

/* add class to the New object list */
finder_addclass("All Objects","mymetro");

}

/**
metro_new(long value)

inputs: value - the integer from the typed in argument in the object box
description: creates a new instance of this class metro.
returns: pointer to new instance
***/
void *metro_new(long value)
{

Metro *m;

m = (Metro *)newobject(class); // create the new instance and return a pointer to it

if (value > MIN_TEMPO) // initialize the subtraction value
{

m->m_interval = value; // save tempo arguement from box
post("mymetro tempo set to %ld", value);

}
else
{

m->m_interval = DEFAULT_TEMPO; // set to default tempo
post("mymetro set to default tempo of %ld ms", DEFAULT_TEMPO);

}
m->m_clock = clock_new(m, (method)clock_function); // create the metronome clock

intin(m, 1); // create the right inlet
m->m_time_outlet = intout(m); // create right outlet for time
m->m_bang_outlet = bangout(m); // create left outlet for ticks

return(m);
}

/***
metro_in1(Metro *m, long value)

inputs: m -- pointer to our object
value -- value received in the inlet

description: stores the new metronome tempo value
***/
void *metro_in1(Metro *m, long value)
{

m->m_interval = value; // store the new metronome interval
post("metronome tempo changed to %ld", value);

}

/***
void *metro_bang(Metro *m)

inputs: m -- pointer to our object
description: method called when bang is received: it starts the metronome
***/
void *metro_bang(Metro *m)

{
long time;

time = gettime(); // get current time
clock_set(m->m_clock, time); // set clock to go off now
post("clock started at %ld", time);

}

January 15, 1998 23 5:14 PM

Max External Turorial (v. 2.0) Fujinaga

/***
void *metro_stop(Metro *m)

inputs: m -- pointer to our object
description: method called when myMetro receives "stop" message. Stops the metronome
***/
void *metro_stop(Metro *m)

{
long time;

time = gettime(); // get current time
clock_unset(m->m_clock); // remove the clock routine from the scheduler
outlet_int(m->m_time_outlet, time);
post("metronome stopped at %ld", time);

}

/***
void clock_function(Metro *m)

inputs: m -- pointer to our object
description: method called when clock goes off: it outputs a bang to be sent to the

outlet and resets the clock to go off after the next interval.
***/
void *clock_function(Metro *m)

{
long time;

time = gettime(); // get current time
clock_delay(m->m_clock, m->m_interval); // schedule another metronome click
outlet_bang(m->m_bang_outlet); // send out a bang
outlet_int(m->m_time_outlet, time); // send current time to right outlet
post("clock_function %ld", time);

}

/***
metro_free(Metro *m)

inputs: m -- pointer to our object
description: method called when Metro objects is destroyed. It is used to free memory

allocated to the clock.
***/
void *metro_free(Metro *m)
{

clock_unset(m->m_clock); // remove the clock routine from the scheduler
clock_free(m->m_clock); // free the clock memory

}

void *metro_assist(Metro *m, Object *b, long msg, long arg, char *s)
{

// copy the appropriate message to the destination string
assist_string(ResourceID, msg, arg, 1L, 4L, s);

}

January 15, 1998 24 5:14 PM

